Where does fertilization typically occur in the female reproductive system?
- A. uterus
- B. fallopian tube
- C. endometrium
- D. ovary
Correct Answer: B
Rationale: Fertilization typically occurs in the fallopian tube, specifically in the ampulla, which is the widest part of the tube. After ovulation, the released egg travels through the fallopian tube where it may encounter sperm for fertilization to take place. The fallopian tube provides the ideal environment for fertilization due to the presence of cilia that help move the egg and sperm towards each other. The uterus is where the fertilized egg will implant and develop into a fetus, not where fertilization occurs. The endometrium is the lining of the uterus that thickens to support a potential pregnancy but is not the site of fertilization. The ovary releases the egg during ovulation but is not where fertilization occurs.
You may also like to solve these questions
Which of the following choices would contain the code for making a protein?
- A. mRNA
- B. tRNA
- C. rRNA
- D. DNA polymerase
Correct Answer: A
Rationale: The correct answer is A: mRNA (messenger RNA). mRNA contains the genetic code or instructions for making a protein. During protein synthesis, mRNA carries the genetic information from DNA in the cell nucleus to the ribosomes, where proteins are synthesized. The sequence of nucleotides in mRNA corresponds to the sequence of amino acids that will be used to build the protein. Choice B, tRNA (transfer RNA), is involved in carrying amino acids to the ribosome during protein synthesis but does not contain the code for making a protein. Choice C, rRNA (ribosomal RNA), is a component of ribosomes where protein synthesis occurs but does not contain the specific code for making a protein. Choice D, DNA polymerase, is an enzyme involved in DNA replication, not in directly coding for protein synthesis.
What describes a cell's reaction to being placed in a hypertonic solution?
- A. The cell will shrink as water is pulled out of the cell to equalize the concentrations inside and outside of the cell.
- B. The cell will swell as water is pulled into the cell to equalize the concentrations inside and outside of the cell.
- C. The cell will remain the same size since the concentrations inside and outside the cell are equal to begin with.
- D. The pH inside the cell will drop in order to equalize the pH inside and outside the cell.
Correct Answer: A
Rationale: A cell placed in a hypertonic solution has a higher solute concentration outside the cell compared to inside. This creates a concentration gradient that causes water to move out of the cell through osmosis to equalize the concentrations on both sides. As a result, the cell will shrink or undergo plasmolysis, as water is pulled out of the cell. Choice B is incorrect because a hypertonic solution causes water to move out of the cell, leading to shrinkage rather than swelling. Choice C is incorrect as a hypertonic solution results in a concentration gradient that leads to water leaving the cell, causing it to shrink. Choice D is incorrect because pH is not directly affected by being placed in a hypertonic solution; the change in solute concentration primarily impacts water movement.
Which of the following layers of skin acts as an energy reserve by storing adipocytes and releasing them into circulation when energy is needed?
- A. epidermis
- B. dermis
- C. hypodermis
- D. stratum basale
Correct Answer: C
Rationale: The hypodermis, also known as the subcutaneous tissue, is the deepest layer of the skin. This layer contains adipocytes (fat cells) that act as an energy reserve by storing excess energy in the form of fat. When energy is needed, these stored fats can be released into circulation to be used by the body's cells. The epidermis is the outermost layer of the skin, primarily responsible for providing a protective barrier. The dermis lies between the epidermis and hypodermis and contains blood vessels, nerves, and structures like hair follicles and sweat glands. The stratum basale is the deepest layer of the epidermis, responsible for cell renewal and regeneration.
What term describes a series of muscle contractions that transports food down the digestive tract in a wave-like fashion?
- A. digestion
- B. deglutition
- C. defecation
- D. peristalsis
Correct Answer: D
Rationale: Peristalsis is the correct term for the series of muscle contractions that move food down the digestive tract in a wave-like manner. This process helps propel food through the esophagus, stomach, and intestines, facilitating digestion and nutrient absorption. Digestion (Choice A) refers to the breakdown of food into smaller components, deglutition (Choice B) is the act of swallowing, and defecation (Choice C) is the elimination of waste from the body. Therefore, peristalsis is the most appropriate term to describe the described muscle contractions in the digestive system.
Which of the following are the blood vessels that transport blood away from the heart?
- A. arteries
- B. capillaries
- C. venules
- D. veins
Correct Answer: A
Rationale: Arteries are blood vessels that carry oxygen-rich blood away from the heart to various parts of the body. Therefore, they are the vessels that transport blood away from the heart. Veins, on the other hand, transport blood back to the heart. Capillaries are tiny blood vessels where the exchange of nutrients and waste products occurs between blood and tissues, not vessels that transport blood to the heart. Venules are small veins that collect blood from capillaries and connect them to larger veins, rather than transport blood to the heart.