In physics, what does the term 'terminal velocity' refer to?
- A. Maximum velocity reached by an object in free fall
- B. Velocity when the object is at rest
- C. Instantaneous velocity of an object
- D. Velocity only reached by heavy objects
Correct Answer: A
Rationale: Terminal velocity in physics refers to the maximum velocity achieved by an object in free fall when the force of gravity equals the force of air resistance. At terminal velocity, the object stops accelerating and maintains a constant speed. This occurs when the opposing forces are balanced, leading to no further increase in speed. Choice B is incorrect as velocity when the object is at rest is zero, not at terminal velocity. Choice C is incorrect as instantaneous velocity refers to the velocity at a specific moment in time, not the maximum speed reached in free fall. Choice D is incorrect because terminal velocity is not exclusive to heavy objects; all objects in free fall can reach terminal velocity under the right conditions.
You may also like to solve these questions
Which muscular chamber of the heart receives blood from the body and pumps it to the lungs?
- A. Right atrium
- B. Left atrium
- C. Right ventricle
- D. Left ventricle
Correct Answer: A
Rationale: The correct answer is the right atrium. The right atrium receives deoxygenated blood from the body through the superior and inferior vena cava. It then pumps this deoxygenated blood to the lungs via the pulmonary artery for oxygenation. The left atrium receives oxygenated blood from the lungs and pumps it to the left ventricle. The right ventricle receives oxygen-poor blood from the right atrium and pumps it to the lungs. The left ventricle receives oxygenated blood from the left atrium and pumps it to the rest of the body.
What is the process of separating a mixture based on the different boiling points of its components called?
- A. Filtration
- B. Chromatography
- C. Distillation
- D. Centrifugation
Correct Answer: C
Rationale: Distillation is the process of separating a mixture based on the different boiling points of its components. During distillation, the mixture is heated to vaporize the component with the lowest boiling point first. The vapor is then cooled and condensed back into a liquid, allowing for the collection of fractions with different boiling ranges. This technique is effective for separating components that have significantly different boiling points. Filtration (Choice A) is a method used to separate solids from liquids or gases using a filter medium. Chromatography (Choice B) is a technique used to separate components of a mixture based on their differential affinities to a stationary phase and a mobile phase. Centrifugation (Choice D) is a process of separating particles from a solution based on differences in size, shape, density, and viscosity by spinning the mixture at high speeds.
How do vaccines primarily function within the body?
- A. Creating a physical barrier against pathogens
- B. Triggering an inflammatory response
- C. Developing immunological memory to a specific pathogen
- D. Activating phagocytes to engulf pathogens
Correct Answer: C
Rationale: Vaccines primarily function by stimulating the immune system to develop immunological memory to a specific pathogen. When a vaccine is administered, it exposes the immune system to a harmless version of a pathogen or a piece of it. This exposure triggers the immune response, leading to the production of antibodies and memory cells specific to that pathogen. Choice A is incorrect because vaccines do not create a physical barrier; rather, they prepare the immune system to recognize and fight specific pathogens. Choice B is incorrect as vaccines do trigger an immune response, but the primary goal is to create memory rather than inflammation. Choice D is incorrect as vaccines do not directly activate phagocytes; instead, they stimulate the immune system to generate a targeted response against a particular pathogen.
What are the three main types of muscle tissue in the human body?
- A. Smooth, cardiac, and voluntary skeletal
- B. Smooth, skeletal, and involuntary cardiac
- C. Voluntary smooth, cardiac, and skeletal
- D. Striated, non-striated, and epithelial
Correct Answer: A
Rationale: The three main types of muscle tissue in the human body are smooth muscle (involuntary), cardiac muscle (involuntary), and voluntary skeletal muscle. Smooth muscle is found in the walls of hollow organs, cardiac muscle is found in the heart, and skeletal muscle is attached to bones and is under voluntary control. Option A correctly identifies these three main types of muscle tissue in the human body. Choice B is incorrect because it lists skeletal muscle as involuntary, which is not accurate. Choice C is incorrect because it lists voluntary smooth muscle, which does not exist as smooth muscle is involuntary. Choice D is incorrect because it uses terms like striated, non-striated, and epithelial, which are not the main types of muscle tissue but rather descriptions related to muscle characteristics and location.
What is the energy required to break a chemical bond called?
- A. Kinetic energy
- B. Potential energy
- C. Activation energy
- D. Bond energy
Correct Answer: C
Rationale: Activation energy is the energy required to break a chemical bond and initiate a chemical reaction. It is the minimum amount of energy needed to start a chemical reaction by breaking bonds in the reactant molecules. Kinetic energy (option A) is the energy of motion and is not directly related to breaking chemical bonds. Potential energy (option B) is stored energy that can be converted into other forms of energy but is not specifically about breaking chemical bonds. Bond energy (option D) refers to the energy required to break a particular chemical bond in a molecule and is not the general term for the energy needed to break any chemical bond. Activation energy is crucial in determining the rate of a chemical reaction as it affects the probability of reactant molecules colliding with sufficient energy to surpass the energy barrier and form products.