In open-channel flow, a critical property is the free surface, which refers to the:
- A. Interface between the liquid and the container walls
- B. Interface between the liquid and a surrounding gas
- C. Bottom of the channel
- D. Region of highest velocity within the liquid
Correct Answer: B
Rationale: The free surface in open-channel flow refers to the interface between the liquid and the surrounding gas, typically the atmosphere. This interface is critical as it determines the boundary between the liquid flow and the open environment. Option A is incorrect as it refers to the liquid-container wall interface, not the free surface. Option C is incorrect because it represents the bottom of the channel, not the free surface. Option D is incorrect as it describes the region of highest velocity within the liquid, not the free surface. Therefore, the correct choice is B.
You may also like to solve these questions
Which conclusion can be drawn from Ohm's law?
- A. Voltage and current are inversely proportional when resistance is constant.
- B. The ratio of the potential difference between the ends of a conductor to current is a constant, R.
- C. Voltage is the amount of charge that passes through a point per second.
- D. Power (P) can be calculated by multiplying current (I) by voltage (V).
Correct Answer: B
Rationale: Ohm's law states that the ratio of the potential difference (voltage) between the ends of a conductor to the current flowing through it is a constant. Mathematically, this is represented as V = I x R, where V is voltage, I is current, and R is the constant resistance. Therefore, the correct conclusion that can be drawn from Ohm's law is that the ratio of the potential difference between the ends of a conductor to current is a constant, denoted as R. This relationship is fundamental to understanding the behavior of electrical circuits and the effect of resistance on voltage and current. Choice A is incorrect because Ohm's law actually states that voltage and current are directly proportional when resistance is constant. Choice C is incorrect because voltage is not the amount of charge that passes through a point per second; rather, it is the electric potential energy per unit charge. Choice D is incorrect because although power (P) can be calculated by multiplying current (I) by voltage (V), this is not a conclusion directly drawn from Ohm's law.
Enthalpy (H) is a thermodynamic property defined as the sum of a system's internal energy (U) and the product of its pressure (P) and volume (V). The relationship between these is:
- A. H = U + PV
- B. H = U - PV
- C. H = U / PV
- D. H = PV / U
Correct Answer: A
Rationale: Enthalpy (H) is defined as H = U + PV, where U represents internal energy, P is pressure, and V is volume. Enthalpy includes both the internal energy of a system and the energy required to create space for the system against an external pressure. Therefore, the correct relationship between enthalpy, internal energy, pressure, and volume is H = U + PV. Choice B is incorrect as subtracting PV would not account for the work done against pressure. Choice C is incorrect as dividing U by PV doesn't represent the definition of enthalpy. Choice D is incorrect as dividing PV by U is not the correct relationship based on the definition of enthalpy.
According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:
- A. Depend on the specific fluid type
- B. Decrease
- C. Remain constant
- D. Increase
Correct Answer: B
Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.
In a circuit with three same-size resistors wired in series to a 9-V power supply, producing 1 amp of current, what is the resistance of each resistor?
- A. 9 ohms
- B. 6 ohms
- C. 3 ohms
- D. 1 ohm
Correct Answer: C
Rationale: In a series circuit, the total resistance is the sum of the individual resistances. With a total voltage of 9 V and a current of 1 A, we can use Ohm's Law (V = I R) to find the total resistance: Total resistance = 9 V / 1 A = 9 ohms. Since the resistors are identical and wired in series, the total resistance is evenly divided among the three resistors: Resistance of each resistor = 9 ohms / 3 = 3 ohms. Thus, the resistance of each resistor is 3 ohms. Therefore, the correct answer is 3 ohms. Choice A, 9 ohms, is incorrect because this would be the total resistance of all three resistors combined in series. Choice B, 6 ohms, is incorrect as it does not account for the equal distribution of resistance in a series circuit. Choice D, 1 ohm, is incorrect as it is too low for resistors in series with a total resistance of 9 ohms.
A 110-volt appliance draws 0 amperes. How many watts of power does it require?
- A. 0 watts
- B. 108 watts
- C. 112 watts
- D. 220 watts
Correct Answer: A
Rationale: When a 110-volt appliance draws 0 amperes, it means that the power consumption is zero as well. The formula to calculate power is P = V x I, where P is power in watts, V is voltage in volts, and I is current in amperes. Since the current is 0 amperes, the power required by the appliance is also 0 watts. Therefore, the correct answer is 0 watts. Choice B, 108 watts, is incorrect because there is no current drawn. Choice C, 112 watts, and choice D, 220 watts, are incorrect as well since the appliance is not consuming any power when drawing 0 amperes.