A 0-kg block on a table is given a push so that it slides along the table. If the block is accelerated at 6 m/s2, what was the force applied to the block?
- A. 0 N
- B. 3 N
- C. 6 N
- D. The answer cannot be determined from the information given.
Correct Answer: A
Rationale: According to Newton's second law of motion,
F=ma. Since the block has a mass of 0 kg, the force applied must be 0 N, as no force is needed to move an object with zero mass.
You may also like to solve these questions
Given the four wires described here, which would you expect to have the greatest resistance?
- A. 1 km of American wire gauge 1; diameter 7.35 mm
- B. 1 km of American wire gauge 2; diameter 6.54 mm
- C. 1 km of American wire gauge 3; diameter 5.83 mm
- D. 1 km of American wire gauge 4; diameter 5.19 mm
Correct Answer: D
Rationale: The wire with the greatest resistance is the one with the smallest diameter, as resistance is inversely proportional to cross-sectional area. Gauge 4 with a 5.19 mm diameter has the smallest diameter and, therefore, the greatest resistance. Choice A, B, and C have larger diameters compared to choice D, so they would have lower resistance values.
Which of the following substances has the highest density?
- A. Mist
- B. Water
- C. Steam
- D. Ice
Correct Answer: B
Rationale: Water has the highest density among the options provided. Density is a measure of mass per unit volume. In this case, water in its liquid form is denser than mist, steam, and ice. Ice has a lower density than water because its crystalline structure causes it to be less dense. Mist and steam are forms of water vapor, which are much less dense than liquid water. Therefore, the correct answer is water (choice B).
Why does potential energy increase as particles approach each other?
- A. Attractive forces increase.
- B. Attractive forces decrease.
- C. Repulsive forces increase.
- D. Repulsive forces decrease.
Correct Answer: C
Rationale: The correct answer is C: Repulsive forces increase. As particles approach each other, the distance between them decreases, causing the repulsive forces between the particles to increase. This increase in repulsive forces leads to an increase in potential energy as the particles resist being pushed closer together. Choices A and B are incorrect because attractive forces do not increase or decrease in this scenario. Choice D is incorrect because repulsive forces actually increase as particles get closer, leading to a rise in potential energy.
In terms of electrical conductivity, semiconductors fall between
- A. Conductors and insulators
- B. Conductors and superconductors
- C. Insulators and dielectrics
- D. Superconductors and insulators
Correct Answer: A
Rationale: Semiconductors have electrical conductivities that lie between those of conductors (high conductivity) and insulators (low conductivity). This positioning makes choice A, 'Conductors and insulators,' the correct answer. Choice B, 'Conductors and superconductors,' is incorrect because superconductors have perfect conductivity, not intermediate like semiconductors. Choice C, 'Insulators and dielectrics,' is incorrect because dielectrics are a type of insulator, so it doesn't show the progression from high to low conductivity. Choice D, 'Superconductors and insulators,' is incorrect because superconductors have the highest conductivity, opposite to the role of semiconductors.
What is the primary factor responsible for generating lift on an airplane wing?
- A. Propulsion force generated by the engines
- B. Buoyant forces acting on the entire aircraft
- C. Drag reduction achieved through streamlining
- D. Application of Bernoulli's principle to the airfoil's shape
Correct Answer: D
Rationale: The primary factor responsible for generating lift on an airplane wing is the application of Bernoulli's principle. This principle states that the air moving over the curved top surface of the wing has to travel faster, leading to reduced pressure above the wing and creating lift. Engines provide thrust for propulsion, not lift. Buoyant forces are more relevant to lighter-than-air aircraft like balloons or airships, not airplanes. While drag reduction through streamlining is important for efficiency, it is not the primary factor in lift generation. Therefore, the correct answer is D.
Nokea