A 3-volt flashlight uses a bulb with 60-ohm resistance. What current flows through the flashlight?
- A. o.05 amp
- B. o.5 amp
- C. 1.8 amp
- D. 18 amp
Correct Answer: A
Rationale: : Using Ohm's Law, I = V / R:
I = 3 / 60 = 0.05 amp.
So, the correct current is 0.05 amp.
You may also like to solve these questions
A 60-watt lightbulb is powered by a 110-volt power source. What is the current being drawn?
- A. 0.55 amperes
- B. 1.83 amperes
- C. 50 amperes
- D. 6,600 amperes
Correct Answer: A
Rationale: To calculate the current being drawn, use the formula I = P / V, where I is the current, P is the power in watts, and V is the voltage. Substituting the given values, I = 60 / 110 ≈ 0.55 amperes. Therefore, the current being drawn by the 60-watt lightbulb is approximately 0.55 amperes. Choice B, 1.83 amperes, is incorrect as it does not match the calculated value. Choices C and D, 50 amperes and 6,600 amperes, are significantly higher values and do not align with the expected current draw of a 60-watt lightbulb powered by a 110-volt source.
An electromagnet is holding a 1,500-kg car at a height of 25 m above the ground. The magnet then experiences a power outage, and the car falls to the ground. Which of the following is false?
- A. The car had a potential energy of 367.5 kJ.
- B. 367.5 kJ of potential energy is converted to kinetic energy.
- C. The car retains potential energy of 367.5 kJ when it hits the ground.
- D. The car's potential energy converts to kinetic energy and then to sound energy.
Correct Answer: C
Rationale: When the car falls to the ground, its potential energy is converted to kinetic energy as it accelerates downwards. Upon impact with the ground, the car's kinetic energy is dissipated in various forms, such as sound energy, heat, and deformation energy. Therefore, the car does not retain its initial potential energy of 367.5 kJ when it hits the ground. Choice A is true because the potential energy of the car can be calculated as mgh = 1500 kg * 9.8 m/s^2 * 25 m = 367,500 J = 367.5 kJ. Choice B is true because as the car falls, its potential energy is converted to kinetic energy. Choice D is true as the kinetic energy is eventually dissipated into other forms upon impact.
What is the main difference between a reversible and irreversible process in thermodynamics?
- A. Reversible processes involve heat transfer, while irreversible processes do not.
- B. Reversible processes occur instantaneously, while irreversible processes take time.
- C. Reversible processes can be run in both directions with the same outcome, while irreversible processes cannot.
- D. Reversible processes violate the first law of thermodynamics.
Correct Answer: C
Rationale: A reversible process is an idealized process that can be reversed without leaving any change in either the system or the surroundings. In contrast, irreversible processes cannot be reversed and often involve entropy production or dissipation. Choice A is incorrect because both reversible and irreversible processes can involve heat transfer. Choice B is incorrect as the speed of a process does not determine its reversibility. Choice D is incorrect because reversible processes do not violate the first law of thermodynamics; they comply with it by maintaining a balance between energy inputs and outputs. Therefore, the correct answer is C, as it accurately captures the main difference between reversible and irreversible processes in thermodynamics.
Capillarity describes the tendency of fluids to rise or fall in narrow tubes. This phenomenon arises from the interplay of:
- A. Buoyancy and pressure differentials
- B. Density variations and compressibility of the fluid
- C. Viscous dissipation and inertial effects
- D. Surface tension at the liquid-gas interface and intermolecular forces
Correct Answer: D
Rationale: Capillarity occurs due to surface tension and intermolecular forces between the liquid and the walls of the narrow tube. These forces cause the liquid to rise or fall depending on the cohesion and adhesion properties. Surface tension at the liquid-gas interface and intermolecular forces are responsible for capillary action, making choice D the correct answer. Choices A, B, and C are incorrect as they do not directly relate to the specific forces involved in capillarity.
In a U-tube manometer, a fluid is used to measure pressure differences. When one side is connected to a pressurized system, the fluid level on that side will:
- A. Remain the same
- B. Decrease
- C. Increase
- D. Depend on the type of fluid used
Correct Answer: B
Rationale: In a U-tube manometer, the side connected to a pressurized system will experience a decrease in fluid level due to the pressure exerted by the system. This pressure forces the fluid down, causing the fluid level to decrease. Therefore, choice B is correct. Choices A and C are incorrect because the fluid level will not remain the same or increase when connected to a pressurized system. Choice D is incorrect as the type of fluid used does not determine the direction of the fluid movement in response to pressure.
Nokea