A 60-watt lightbulb is powered by a 110-volt power source. What is the current being drawn?
- A. 0.55 amperes
- B. 1.83 amperes
- C. 50 amperes
- D. 6,600 amperes
Correct Answer: A
Rationale: To calculate the current being drawn, use the formula I = P / V, where I is the current, P is the power in watts, and V is the voltage. Substituting the given values, I = 60 / 110 ≈ 0.55 amperes. Therefore, the current being drawn by the 60-watt lightbulb is approximately 0.55 amperes. Choice B, 1.83 amperes, is incorrect as it does not match the calculated value. Choices C and D, 50 amperes and 6,600 amperes, are significantly higher values and do not align with the expected current draw of a 60-watt lightbulb powered by a 110-volt source.
You may also like to solve these questions
An object moves 100 m in 10 s. What is the velocity of the object over this time?
- A. 10 m/s
- B. 90 m/s
- C. 110 m/s
- D. 1,000 m/s
Correct Answer: A
Rationale: Velocity is calculated as the displacement divided by the time taken to cover that displacement. In this case, the object moves 100 meters in 10 seconds. Therefore, the velocity is 100 m / 10 s = 10 m/s. Choice B, 90 m/s, is incorrect as it doesn't match the calculated velocity. Choice C, 110 m/s, is incorrect as it is higher than the calculated velocity. Choice D, 1,000 m/s, is incorrect as it is significantly higher than the calculated velocity.
What is the electric field inside a hollow conductor with a net charge?
- A. Remains constant
- B. Decreases
- C. Zero
- D. Becomes unpredictable
Correct Answer: C
Rationale: The correct answer is C: Zero. According to Gauss's Law, the electric field inside a hollow conductor (a conductor with no charge inside but a net charge on its surface) is zero. The charges reside on the outer surface of the conductor, causing the electric field inside to cancel out. Choices A, B, and D are incorrect because the electric field inside a hollow conductor with a net charge is not constant, does not decrease, and does not become unpredictable; it is zero due to the distribution of charges on its surface.
In a U-tube manometer, a fluid is used to measure pressure differences. When one side is connected to a pressurized system, the fluid level on that side will:
- A. Remain the same
- B. Decrease
- C. Increase
- D. Depend on the type of fluid used
Correct Answer: B
Rationale: In a U-tube manometer, the side connected to a pressurized system will experience a decrease in fluid level due to the pressure exerted by the system. This pressure forces the fluid down, causing the fluid level to decrease. Therefore, choice B is correct. Choices A and C are incorrect because the fluid level will not remain the same or increase when connected to a pressurized system. Choice D is incorrect as the type of fluid used does not determine the direction of the fluid movement in response to pressure.
Bernoulli's principle for an incompressible, inviscid fluid in steady flow states that the mechanical energy, consisting of:
- A. Pressure (P) only, remains constant along a streamline.
- B. Velocity (v) only, remains constant along a streamline.
- C. P + ½Ïv² (total mechanical energy), remains constant along a streamline
- D. Density (Ï) only, remains constant along a streamline.
Correct Answer: C
Rationale: Bernoulli's principle states that the sum of pressure energy (P), kinetic energy per unit volume (½Ïv²), and potential energy per unit volume remains constant along a streamline in an incompressible, inviscid fluid. This means the total mechanical energy of the fluid is conserved, making Choice C the correct answer. Choices A, B, and D are incorrect because Bernoulli's principle involves the conservation of the total mechanical energy, not just pressure, velocity, or density alone.
For the core of an electromagnet, a material with high:
- A. Resistivity is ideal
- B. Permeability is preferred
- C. Permittivity is crucial
- D. Dielectric strength is essential
Correct Answer: B
Rationale: A material with high permeability is preferred for the core of an electromagnet because it allows magnetic field lines to pass through it easily, enhancing the strength of the magnetic field generated. Choice A is incorrect because high resistivity would impede the flow of current in the coil, reducing the strength of the magnetic field. Choice C is incorrect as permittivity is related to electric fields, not magnetic fields. Choice D is also incorrect because dielectric strength is about insulating materials against breakdown under an electric field, not relevant to enhancing magnetic fields.
Nokea