A ball is thrown horizontally off a cliff. Which of the following forces is responsible for its downward motion?
- A. The force of throwing
- B. Normal force from the air
- C. Tension force from the string (if used)
- D. Gravitational force
Correct Answer: D
Rationale: The gravitational force is responsible for the downward motion of the ball. When the ball is thrown horizontally off a cliff, the only force acting on it in the vertical direction is the force of gravity, which pulls the ball downward towards the ground. The other forces mentioned (force of throwing, normal force from the air, tension force from the string) do not contribute to the ball's downward motion in this scenario. The force of throwing initiates the horizontal motion, the normal force from the air opposes the ball's motion through air resistance, and tension force from the string would only be relevant if a string were attached to the ball. Therefore, gravitational force is the primary force responsible for the ball's downward motion in this situation.
You may also like to solve these questions
How does polarization affect the intensity of light passing through a polarizing filter?
- A. All light passes through regardless of polarization.
- B. Light with the same polarization as the filter passes through, while others are blocked.
- C. Light with higher intensity passes through, while weaker light is blocked.
- D. The intensity is reduced for all light, regardless of polarization.
Correct Answer: B
Rationale: A polarizing filter only allows light waves with a specific orientation (polarization) to pass through while blocking light waves with different orientations. Therefore, light with the same polarization as the filter will pass through, while light with different polarizations will be blocked. This results in a reduction in intensity for light passing through the polarizing filter. Choice A is incorrect because a polarizing filter selectively filters light based on its polarization. Choice C is incorrect as the intensity of light passing through is determined by its polarization, not solely its intensity. Choice D is incorrect because a polarizing filter affects light based on its polarization, not uniformly reducing the intensity for all light passing through.
How is the muscular system benefited by regular exercise?
- A. Decreasing muscle mass
- B. Improving muscle strength and endurance
- C. Making muscles less flexible
- D. Increasing the risk of muscle tears
Correct Answer: B
Rationale: Regular exercise is beneficial for the muscular system by improving muscle strength and endurance. Exercise helps to build and maintain muscle mass, increase muscle strength, and enhance muscle endurance. It does not decrease muscle mass, make muscles less flexible, or increase the risk of muscle tears when done properly. Therefore, the correct answer is improving muscle strength and endurance, as it aligns with the positive effects of regular exercise on the muscular system.
Which gland located in the neck is responsible for regulating metabolism, growth, and development?
- A. Parathyroid gland
- B. Thyroid gland
- C. Pituitary gland
- D. Thymus gland
Correct Answer: B
Rationale: The thyroid gland, located in the neck, is responsible for regulating metabolism, growth, and development. It produces hormones such as thyroxine (T4) and triiodothyronine (T3) that play a crucial role in these functions. The parathyroid gland regulates calcium levels, the pituitary gland controls various hormonal functions, and the thymus gland is involved in immune system development. Therefore, choices A, C, and D are incorrect as they have different functions compared to the thyroid gland.
Balance the chemical equation: C4H10 + O2 → CO2 + H2O. What is the coefficient for oxygen?
- A. 5
- B. 6
- C. 7
- D. 8
Correct Answer: B
Rationale: To balance the chemical equation, we need to ensure that the number of each type of atom is the same on both sides of the equation. In this case, there are 10 oxygen atoms on the right side (5 in CO2 and 5 in H2O). To balance this, we need to add a coefficient of 6 in front of O2 on the left side, resulting in 6 O2 molecules. This change will give us a total of 12 oxygen atoms on both sides, making the equation balanced. Choice A (5) is incorrect because it does not account for all the oxygen atoms present in the products. Choices C (7) and D (8) are incorrect as they would result in an imbalance in the number of oxygen atoms on both sides of the equation.
How does an increase in mass affect the force required to produce the same acceleration on an object?
- A. Increases force required
- B. Decreases force required
- C. Has no effect on force required
- D. Causes unpredictable changes in force required
Correct Answer: A
Rationale: The correct answer is A, 'Increases force required.' According to Newton's second law of motion, force is directly proportional to mass and acceleration (F = ma). Therefore, an increase in mass will require an increase in force to produce the same acceleration on an object. Choice B is incorrect because an increase in mass does not decrease the force required; it increases it. Choice C is incorrect as increasing mass does affect the force required. Choice D is incorrect as the relationship between mass and force is predictable according to Newton's laws of motion.
Nokea