A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?
- A. 5 W
- B. 5 Nâ‹…m
- C. 45 W
- D. 45 Nâ‹…m
Correct Answer: D
Rationale: Work done is calculated using the formula: Work = Force x Distance. In this case, the force applied is 15 N and the distance covered is 3 m. Thus, work done = 15 N x 3 m = 45 Nâ‹…m. Therefore, the correct answer is 45 Nâ‹…m. Choice A (5 W) is incorrect because work is measured in joules (J) or newton-meters (Nâ‹…m), not in watts (W). Choice B (5 Nâ‹…m) is incorrect as it miscalculates the work by not multiplying the force by the distance. Choice C (45 W) is incorrect because work is not measured in watts (W) but in newton-meters (Nâ‹…m).
You may also like to solve these questions
A car, starting from rest, accelerates at 10 m/s² for 5 seconds. What is the velocity of the car after 5 seconds?
- A. 2 m/s
- B. 5 m/s
- C. 50 m/s
- D. The answer cannot be determined from the information given.
Correct Answer: C
Rationale: The velocity of an object can be calculated using the formula: final velocity = initial velocity + (acceleration time). In this case, the car starts from rest, so the initial velocity is 0 m/s. Given that the acceleration is 10 m/s² and the time is 5 seconds, we can plug these values into the formula to find the final velocity: final velocity = 0 m/s + (10 m/s² 5 s) = 0 m/s + 50 m/s = 50 m/s. Therefore, the velocity of the car after 5 seconds is 50 m/s. Choice A (2 m/s) and Choice B (5 m/s) are incorrect because they do not consider the acceleration the car undergoes over the 5 seconds, resulting in a final velocity greater than both. Choice D (The answer cannot be determined from the information given) is incorrect as the final velocity can be determined using the provided data and the kinematic equation.
When the heat of a reaction is negative, which statement is true?
- A. The products have less energy and are less stable.
- B. The products have more energy and are more stable.
- C. The products have less energy and are more stable.
- D. The products have more energy and are less stable.
Correct Answer: C
Rationale: When the heat of a reaction is negative, it indicates that the reaction releases energy in the form of heat. This means that the products have lower energy levels compared to the reactants. Lower energy levels are associated with greater stability in chemical systems. Therefore, when the heat of a reaction is negative, the products are more stable due to having less energy than the reactants. Choice A, stating that the products have less energy and are less stable, is incorrect as lower energy levels imply greater stability. Choice B, stating that the products have more energy and are more stable, is incorrect as lower energy levels lead to higher stability. Choice D, stating that the products have more energy and are less stable, is incorrect as lower energy levels are associated with higher stability.
A bicycle and a car are both traveling at a rate of 5 m/s. Which statement is true?
- A. The bicycle has more kinetic energy than the car.
- B. The bicycle has less kinetic energy than the car.
- C. Both vehicles have the same amount of kinetic energy.
- D. Only the car has kinetic energy.
Correct Answer: B
Rationale: Kinetic energy is determined by both the mass and the velocity of an object. While both the bicycle and the car are moving at the same velocity (5 m/s), the car has significantly more mass than the bicycle. As a result, the car has more kinetic energy than the bicycle, even though their speeds are identical. Therefore, choice B is correct. Choices A, C, and D are incorrect because they do not consider the influence of mass on kinetic energy. Choice A is incorrect as the car has more kinetic energy due to its greater mass. Choice C is incorrect because the vehicles have different masses. Choice D is incorrect as both the bicycle and the car possess kinetic energy.
A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?
- A. 10 kgâ‹…m/s
- B. 15 kgâ‹…m/s
- C. 20 kgâ‹…m/s
- D. 100 kgâ‹…m/s
Correct Answer: D
Rationale: Impulse is the change in momentum of an object. The initial momentum is calculated as 10 kg 5 m/s = 50 kgâ‹…m/s, and the final momentum is 10 kg 15 m/s = 150 kgâ‹…m/s. The change in momentum (impulse) is 150 kgâ‹…m/s - 50 kgâ‹…m/s = 100 kgâ‹…m/s. Therefore, the impulse applied to the object is 100 kgâ‹…m/s. Choices A, B, and C are incorrect because they do not reflect the correct calculation of the impulse based on the change in momentum of the object.
Psychrometrics is a branch of thermodynamics that deals with the properties of:
- A. Ideal gases.
- B. Magnetic materials.
- C. Mixtures of moist air and water vapor.
- D. Nuclear reactions.
Correct Answer: C
Rationale: Psychrometrics is the study of the physical and thermodynamic properties of gas-vapor mixtures, especially mixtures of moist air and water vapor. This branch of thermodynamics focuses on the relationships between temperature, pressure, humidity, and other properties of these mixtures. Choice A, ideal gases, is incorrect because psychrometrics specifically deals with gas-vapor mixtures, not ideal gases. Choice B, magnetic materials, and Choice D, nuclear reactions, are unrelated to psychrometrics and thermodynamics, making them incorrect. Understanding psychrometrics is crucial in fields like heating, ventilation, air conditioning, and refrigeration (HVAC&R) to design systems that effectively control air quality, comfort, and temperature.