Many classic experiments have given us indirect evidence of the nature of the atom. Which of the experiments listed below did not give the results described?
- A. The Rutherford experiment proved the Thomson "plum- pudding" model of the atom to be essentially correct.
- B. The Rutherford experiment was useful in determining the nuclear charge on the atom.
- C. Millikan's oil-drop experiment showed that the charge on any particle was a simple multiple of the charge on the electron.
- D. The electric discharge tube proved that electrons have a negative charge.
Correct Answer: A
Rationale: The correct answer is A because the Rutherford experiment actually disproved the Thomson "plum-pudding" model of the atom. Rutherford's experiment involved firing alpha particles at a thin gold foil and observing their scattering patterns. The results showed that atoms have a small, dense, positively charged nucleus, which contradicted the Thomson model. Choice B is correct as the experiment was indeed useful in determining the nuclear charge on the atom. Choice C is incorrect because Millikan's oil-drop experiment determined the charge on the electron, not just that it was a simple multiple. Choice D is incorrect as the electric discharge tube did show that electrons have a negative charge.
You may also like to solve these questions
Which statement is not correct?
- A. The mass of an alpha particle is 7300 times that of the electron.
- B. An alpha particle has a 2+ charge.
- C. Three types of radioactive emission are gamma rays, beta rays, and alpha particles.
- D. A gamma ray is high-energy light.
Correct Answer: D
Rationale: The correct answer is D because gamma rays are not light but a form of electromagnetic radiation with high energy. Gamma rays have no charge and are produced from the nucleus. Choice A is correct as an alpha particle is heavier than an electron. Choice B is correct as an alpha particle has a 2+ charge. Choice C is correct as these are types of radioactive emissions.
A metric unit for length is
- A. gram
- B. milliliter
- C. yard
- D. kilometer
Correct Answer: D
Rationale: The correct answer is D: kilometer. A kilometer is a metric unit for length because it is used to measure long distances. In the metric system, length is typically measured in meters, and a kilometer is equal to 1000 meters. This makes it a suitable unit for measuring larger distances efficiently.
Explanation for incorrect choices:
A: Gram is a unit of mass, not length.
B: Milliliter is a unit of volume, not length.
C: Yard is a unit of length, but it is not a metric unit. The metric system uses meters and its derivatives for length measurements.
The formula of water, H O, suggests:
- A. There is twice as much mass of hydrogen as oxygen in each molecule.
- B. There are two hydrogen atoms and one oxygen atom per water molecule.
- C. There is twice as much mass of oxygen as hydrogen in each molecule.
- D. There are two oxygen atoms and one hydrogen atom per water molecule.
Correct Answer: B
Rationale: The formula for water is H₂O, indicating there are two hydrogen atoms and one oxygen atom per molecule. This is because the subscript 2 in H₂ represents two hydrogen atoms, and O represents one oxygen atom. Therefore, choice B is correct. Choices A, C, and D are incorrect because they do not accurately represent the composition of water molecules. Choice A suggests twice as much mass of hydrogen than oxygen, which is not true. Choice C suggests twice as much mass of oxygen than hydrogen, which is also incorrect. Choice D implies there are two oxygen atoms in a water molecule, which is inaccurate.
The amount of uncertainty in a measured quantity is determined by:
- A. both the skill of the observer and the limitations of the measuring instrument
- B. neither the skill of the observer nor the limitations of the measuring instrument
- C. the limitations of the measuring instrument only
- D. the skill of the observer only
Correct Answer: A
Rationale: The correct answer is A because the amount of uncertainty in a measured quantity is influenced by both the skill of the observer and the limitations of the measuring instrument. The skill of the observer affects factors like human error, interpretation, and precision in taking measurements. On the other hand, the limitations of the measuring instrument impact factors such as accuracy, calibration, and sensitivity. Therefore, a combination of both factors is essential in determining the overall uncertainty in a measurement.
Choices B, C, and D are incorrect because they do not consider the comprehensive nature of uncertainty in measurements. Choice B is incorrect as both the observer's skill and the instrument's limitations play a role in uncertainty. Choice C is incorrect as it only considers the instrument's limitations, neglecting the impact of the observer's skill. Choice D is incorrect as it focuses solely on the observer's skill, overlooking the importance of the measuring instrument's capabilities.
Which one of the following statements about atomic structure is false?
- A. An atom is mostly empty space.
- B. Almost all of the mass of the atom is concentrated in the nucleus.
- C. The protons and neutrons in the nucleus are very tightly packed.
- D. The number of protons and neutrons is always the same in the neutral atom.
Correct Answer: D
Rationale: The correct answer is D because the statement that the number of protons and neutrons is always the same in a neutral atom is false. In a neutral atom, the number of protons equals the number of electrons, not the number of neutrons. Neutrons are not always equal to the number of protons.
A: An atom is mostly empty space - Correct. This is true because the nucleus is very tiny compared to the overall size of the atom.
B: Almost all of the mass of the atom is concentrated in the nucleus - Correct. This is true because protons and neutrons have much more mass than electrons.
C: The protons and neutrons in the nucleus are very tightly packed - Correct. This is true because protons and neutrons are densely packed within the nucleus.