During which stage of meiosis II are sister chromatids separated, resulting in four genetically unique daughter cells?
- A. Prophase I
- B. Prophase II
- C. Anaphase I
- D. Anaphase II
Correct Answer: D
Rationale: - Prophase I occurs in meiosis I, not meiosis II. During Prophase I, homologous chromosomes pair up and exchange genetic material in a process called crossing over.
- Prophase II is the stage where the nuclear envelope breaks down, and spindle fibers start to reappear, preparing the cell for division. Sister chromatids are still attached during Prophase II.
- Anaphase I is the stage in meiosis I where homologous chromosomes are separated and pulled to opposite poles of the cell.
- Anaphase II is the stage in meiosis II where sister chromatids are separated and pulled to opposite poles of the cell, resulting in four genetically unique daughter cells. This is the stage where the final separation of genetic material occurs, leading to the formation of haploid daughter cells.
You may also like to solve these questions
Which term describes the ability of a muscle to return to its original length and shape after being stretched or contracted?
- A. Contractility
- B. Elasticity
- C. Extensibility
- D. Excitability
Correct Answer: B
Rationale: Elasticity is the correct term that describes the ability of a muscle to return to its original length and shape after being stretched or contracted. Contractility refers to the ability of a muscle to contract or shorten. Extensibility is the ability of a muscle to be stretched. Excitability is the ability of a muscle to receive and respond to stimuli. Therefore, the correct answer is 'Elasticity' as it specifically relates to the muscle's ability to regain its original form.
What is the work done by a force of 20 N acting on an object that moves 5 meters in the direction of the force?
- A. 100 Joules (J)
- B. 25 Joules (J)
- C. 4 Joules (J)
- D. Work cannot be determined without knowing the object's mass.
Correct Answer: A
Rationale: The work done is calculated using the formula: Work = Force x Distance x cos(theta), where theta is the angle between the force and the direction of motion. In this case, the force and the direction of motion are in the same direction, so cos(theta) = 1. Therefore, Work = 20 N x 5 m x 1 = 100 Joules. Since the force and distance are given and are in the same direction, the work done can be directly calculated without needing to know the object's mass. Choice A, 100 Joules, is the correct answer as calculated. Choice B and C are incorrect as they do not correspond to the correct calculation. Choice D is incorrect because knowing the object's mass is not necessary to calculate work in this scenario, as work is dependent on force, distance, and the angle between them, not mass.
Which element has the lowest electronegativity value?
- A. Oxygen
- B. Fluorine
- C. Helium
- D. Chlorine
Correct Answer: C
Rationale: The correct answer is Helium (C). Electronegativity is the tendency of an atom to attract electrons towards itself in a bond. Helium, as a noble gas, has a very low electronegativity because its outer electron shell is already full and stable, resulting in minimal attraction for additional electrons. Oxygen (A), Fluorine (B), and Chlorine (D) are all non-noble gas elements that have higher electronegativity values compared to Helium due to their electron configurations and tendencies to attract electrons.
The kidneys are bean-shaped organs responsible for filtering waste products from the blood. What is the main nitrogenous waste product the kidneys eliminate?
- A. Carbon dioxide
- B. Ammonia
- C. Urea
- D. Glucose
Correct Answer: C
Rationale: The correct answer is C, urea. Urea is the main nitrogenous waste product eliminated by the kidneys. It is produced in the liver from protein metabolism and excreted in urine. Carbon dioxide is eliminated through the lungs as a waste product of cellular respiration and not by the kidneys. Ammonia, a toxic waste product, is converted to urea in the liver before being excreted by the kidneys. Glucose is a sugar that is reabsorbed by the kidneys and not excreted as waste.
What are the differences between RNA and DNA?
- A. Both have the same structure and function.
- B. RNA is single-stranded, while DNA is double-stranded.
- C. RNA contains ribose sugar, while DNA contains deoxyribose sugar.
- D. RNA has adenine and guanine, while DNA has thymine and cytosine.
Correct Answer: B
Rationale: A) This statement is incorrect. RNA and DNA have different structures and functions. RNA is involved in protein synthesis and other cellular processes, while DNA stores genetic information. B) This statement is correct. RNA is typically single-stranded, while DNA is double-stranded, forming a double helix structure. C) This statement is correct. RNA contains ribose sugar in its backbone, while DNA contains deoxyribose sugar. D) This statement is incorrect. RNA contains adenine, guanine, cytosine, and uracil, while DNA contains adenine, guanine, cytosine, and thymine. Choice B is the correct answer as it accurately describes one of the key differences between RNA and DNA, emphasizing their structural disparity in terms of single-strandedness for RNA and double-strandedness for DNA. Choices A, C, and D contain inaccuracies regarding the structural and compositional distinctions between RNA and DNA, making them incorrect choices.