From which component do RNA and DNA derive their names?
- A. From the sugar each contains
- B. From the structure of their nucleotides
- C. From the information they transfer
- D. From their formative processes
Correct Answer: A
Rationale: RNA and DNA derive their names from the sugar each contains. RNA stands for Ribonucleic Acid, with 'ribo' indicating the ribose sugar in its structure. DNA stands for Deoxyribonucleic Acid, with 'deoxyribo' referring to the deoxyribose sugar in its structure. The sugars in RNA and DNA molecules distinguish them and are the basis for their names. Choices B, C, and D are incorrect as they do not accurately explain how RNA and DNA derive their names.
You may also like to solve these questions
Which structure might be described as a core of nucleic acid surrounded by a protein coat?
- A. RNA
- B. Virus
- C. Blue-green alga
- D. Saprophyte
Correct Answer: B
Rationale: A virus can be described as a core of nucleic acid (either RNA or DNA) surrounded by a protein coat, known as a capsid. This structure distinguishes viruses from other microorganisms such as blue-green algae (Cyanobacteria), fungi known as saprophytes, or individual RNA molecules. Viruses depend on a host cell to replicate and are considered non-living entities due to their inability to carry out metabolic functions independently.
Which is an example of a gymnosperm?
- A. Red cedar
- B. Japanese cherry
- C. Flowering dogwood
- D. American chestnut
Correct Answer: A
Rationale: Red cedar is the correct answer as it is an example of a gymnosperm. Gymnosperms are plants that produce seeds not enclosed within an ovary or fruit. In the case of red cedar, it belongs to the gymnosperm group and has naked seeds that are exposed on the surface of scales or leaves. Choices B, C, and D are angiosperms, not gymnosperms. Japanese cherry, flowering dogwood, and American chestnut are all examples of angiosperms, which are flowering plants with seeds enclosed within an ovary.
How should a researcher test the hypothesis that radiation from cell phones is significant enough to raise the temperature of water in a test tube?
- A. Dial a cell phone that rests beside a test tube of water, let it ring for two minutes, and record the temperature of the water before and after the two-minute interval.
- B. Dial a cell phone that rests beside a test tube of water; let it ring for two, three, and four minutes; and record the temperature of the water before and after each interval.
- C. Use three different brands of cell phone; dial each as it rests beside its own test tube of water, let it ring for two minutes, and record the temperature of the water before and after the two-minute interval.
- D. Use three different brands of cell phone, dial each and let one ring for two minutes, one for three minutes, and one for four minutes; record the temperature of the water before and after each interval.
Correct Answer: A
Rationale: To test the hypothesis that radiation from cell phones raises the temperature of water in a test tube, the most appropriate method is to dial a cell phone next to a test tube of water, let it ring for a consistent two-minute interval, and record the temperature before and after. Choice A is correct because it provides a controlled approach to isolate the impact of the phone's radiation on the water temperature. Choices B, C, and D introduce additional variables that could confound the results. Choice B varies the duration of exposure, making it difficult to attribute temperature changes specifically to the radiation. Choice C introduces the factor of different cell phone brands, which could introduce variability not related to radiation. Choice D also varies exposure times and introduces the factor of multiple phone brands, making it harder to determine the direct impact of cell phone radiation on water temperature. Therefore, choice A is the most suitable option for this experiment.
Two organisms live in a relationship from which both benefit. What is this called?
- A. Mutualism
- B. Parasitism
- C. Commensalism
- D. Competition
Correct Answer: A
Rationale: Mutualism is a type of symbiotic relationship between two organisms in which both parties benefit from the association. It is a mutually beneficial interaction where both organisms gain something valuable, such as food, protection, or some other resource. This contrasts with parasitism, where one organism benefits at the expense of the other, commensalism, where one organism benefits while the other is unaffected, and competition, where both organisms are negatively affected by their interaction.
Whose energy efficiency is greater?
- A. Herbivore
- B. Carnivore
- C. Omnivore
- D. Decomposer
Correct Answer: D
Rationale: Decomposers have the greatest efficiency of energy among the given options. Decomposers break down organic matter, such as dead plants and animals, into simpler substances through the process of decomposition. This breakdown process results in the release of nutrients back into the ecosystem, making energy more readily available for other organisms to use. In contrast, herbivores, carnivores, and omnivores all derive their energy from the consumption of other living organisms, making their energy efficiency lower than that of decomposers. Herbivores consume plants for energy, which involves energy loss due to inefficiencies in converting plant matter into usable energy. Carnivores consume herbivores or other carnivores, leading to further energy loss through each trophic level. Omnivores consume both plant and animal matter, but their energy efficiency is still lower than decomposers because of the energy loss associated with consuming living organisms. Decomposers play a crucial role in recycling nutrients and energy in ecosystems, making them highly efficient in the utilization of energy.
Nokea