How are elements arranged in the periodic table?
- A. Order of increasing atomic number
- B. Alphabetical order
- C. Order of increasing metallic properties
- D. Order of increasing neutron content
Correct Answer: A
Rationale: In the periodic table, the elements are arranged in order of increasing atomic number. This organization is based on the number of protons in the nucleus of each element. It provides a systematic way to classify elements and predict their properties. Knowing the atomic number of an element helps determine its placement in the periodic table and its characteristics. Therefore, the correct answer is the order of increasing atomic number as it is fundamental to the structure and properties of the elements. Choices B, C, and D are incorrect. Alphabetical order does not reflect any underlying property of the elements, metallic properties vary across the table, and neutron content alone is not the basis for the arrangement in the periodic table.
You may also like to solve these questions
What are the s block and p block elements collectively known as?
- A. Transition elements
- B. Active elements
- C. Representative elements
- D. Inactive elements
Correct Answer: C
Rationale: The s block and p block elements are collectively known as representative elements. These elements are part of the main group elements in the periodic table, excluding the transition elements. The s block elements are located in groups 1 and 2, while the p block elements are found in groups 13 to 18. These elements display a diverse range of chemical behaviors and properties, representing the variety of elements in the periodic table. Choice A, Transition elements, is incorrect because transition elements are the elements in groups 3 to 12, which are located between the s block and the p block elements. Choice B, Active elements, is not a specific term used to refer to the s and p block elements collectively. Choice D, Inactive elements, is incorrect as the s and p block elements are known for their reactivity and participation in a wide range of chemical reactions.
What is the spontaneous, random movement of small particles suspended in a liquid, caused by the unbalanced impacts of molecules on the particle?
- A. Brownian motion
- B. Grey's kinesis
- C. Boyle's wave
- D. None of the above
Correct Answer: A
Rationale: Brownian motion is the correct choice as it specifically refers to the spontaneous, random movement of small particles suspended in a liquid, caused by the unbalanced impacts of molecules on the particle. This phenomenon was observed and documented by Robert Brown, leading to the discovery of the existence of molecules. Grey's kinesis and Boyle's wave are not scientifically recognized terms related to this concept.
How many amino acids are essential for human life?
- A. 22
- B. 20
- C. 18
- D. 24
Correct Answer: B
Rationale: There are 20 essential amino acids required for human life. These amino acids cannot be synthesized by the body and must be obtained through the diet. They play crucial roles in various physiological functions and are necessary for protein synthesis and overall health. Choice A is incorrect because there are not 22 essential amino acids. Choice C is incorrect as there are more than 18 essential amino acids. Choice D is incorrect as there are not 24 essential amino acids for human life.
What type of starch is glycogen?
- A. Plant starch
- B. Animal starch
- C. Glucose
- D. Cellulose
Correct Answer: B
Rationale: Glycogen is classified as animal starch, not plant starch. It is the storage form of glucose in animals, primarily found in the liver and muscles. Choice A (Plant starch) is incorrect because glycogen is not derived from plants. Choice C (Glucose) is incorrect as glucose is a monosaccharide and not a type of starch. Choice D (Cellulose) is incorrect as cellulose is a structural polysaccharide found in plant cell walls, not the same as glycogen.
What are mixtures of 2 or more metals called?
- A. Solutions
- B. Alloys
- C. Compounds
- D. Suspensions
Correct Answer: B
Rationale: Alloys are mixtures of two or more metals, combining their properties to create materials with enhanced characteristics. Examples of alloys include bronze (copper and tin) and steel (iron and carbon). Alloys are commonly used in various industries due to their improved strength, durability, and other desirable qualities. Solutions (Choice A) refer to a homogeneous mixture of two or more substances, where one substance is dissolved in another. Compounds (Choice C) are substances composed of two or more elements chemically combined in fixed proportions. Suspensions (Choice D) are heterogeneous mixtures where particles are dispersed but can settle out over time.