How do isotopes affect the atomic mass of an element?
- A. Isotopes have no effect on the atomic mass of an element.
- B. Isotopes cause the atomic mass of an element to vary slightly.
- C. Isotopes cause the atomic mass of an element to be exactly the same for all isotopes of that element.
- D. Isotopes cause the atomic mass of an element to vary greatly.
Correct Answer: B
Rationale: Isotopes are atoms of the same element that have the same number of protons but different numbers of neutrons. Since the atomic mass of an element is the weighted average of the masses of its isotopes, the presence of isotopes causes the atomic mass of an element to vary slightly. This variation occurs because different isotopes have different masses due to their varying numbers of neutrons. The atomic mass is affected by the abundance of each isotope, leading to a slight fluctuation in the overall atomic mass of the element. Choice A is incorrect because isotopes do influence the atomic mass. Choice C is incorrect because isotopes have different masses, affecting the overall atomic mass. Choice D is incorrect as isotopes typically do not cause a significant variation in atomic mass, but rather a slight fluctuation.
You may also like to solve these questions
What is the term for a solution with a pH value less than 7?
- A. Acidic
- B. Neutral
- C. Alkaline
- D. Basic
Correct Answer: A
Rationale: Solutions with a pH less than 7 are classified as acidic. pH values below 7 indicate an acidic solution, which means it has a higher concentration of hydrogen ions. Choices B, C, and D are incorrect as they describe neutral (pH 7), alkaline (pH greater than 7), and basic (another term for alkaline), respectively, which are not applicable to solutions with a pH less than 7.
Which property of a wave remains constant when the wave enters a different medium?
- A. Frequency
- B. Wavelength
- C. Amplitude
- D. Speed
Correct Answer: A
Rationale: When a wave enters a different medium, its frequency remains constant. Frequency is an intrinsic property of the wave determined by its source, and it does not change when transitioning between different mediums. On the other hand, wavelength, amplitude, and speed of the wave can all be altered when the wave moves from one medium to another. Wavelength is dependent on the speed of the wave and can change when entering a different medium due to differences in propagation speed. Amplitude can also change as it is influenced by factors like energy loss or gain at the boundary of the mediums. Speed, determined by the medium's properties, typically changes when a wave transitions between different mediums due to variations in the medium's density and elasticity.
The 'fight-or-flight' response is triggered by the hormone released from the:
- A. Thyroid gland
- B. Adrenal glands
- C. Pituitary gland
- D. Pancreas
Correct Answer: B
Rationale: The 'fight-or-flight' response is triggered by the release of adrenaline (epinephrine) and norepinephrine from the adrenal glands. These hormones prepare the body to either confront or flee from a perceived threat or stressor. The adrenal glands are crucial in initiating this rapid physiological response. Choices A, C, and D are incorrect because the thyroid gland primarily regulates metabolism and energy levels, the pituitary gland controls other endocrine glands but does not directly trigger the 'fight-or-flight' response, and the pancreas is responsible for regulating blood sugar levels through insulin and glucagon, not for triggering the 'fight-or-flight' response.
What is the term for a genetic disorder caused by a mutation in a mitochondrial gene?
- A. Autosomal dominant disorder
- B. Autosomal recessive disorder
- C. Sex-linked disorder
- D. Mitochondrial disorder
Correct Answer: D
Rationale: A) Autosomal dominant disorder: This type of genetic disorder is caused by a mutation in one copy of an autosomal gene. It is not related to mitochondrial gene mutations. B) Autosomal recessive disorder: This type of genetic disorder is caused by mutations in both copies of an autosomal gene. It is not related to mitochondrial gene mutations. C) Sex-linked disorder: This type of genetic disorder is caused by mutations in genes located on the sex chromosomes (X or Y). It is not related to mitochondrial gene mutations. D) Mitochondrial disorder: Mitochondrial disorders are genetic disorders caused by mutations in genes located in the mitochondria, the energy-producing structures within cells. These disorders are inherited maternally and can affect various organs and systems in the body due to the role of mitochondria in energy production.
What is involved in the involuntary reflex arc that withdraws your hand from a hot object?
- A. Central nervous system only
- B. Peripheral nervous system only
- C. Both CNS and PNS
- D. Sensory neurons only
Correct Answer: C
Rationale: The involuntary reflex arc that withdraws your hand from a hot object involves both the central nervous system (CNS) and the peripheral nervous system (PNS). When your hand touches a hot object, sensory neurons in the PNS detect the heat and send signals to the spinal cord in the CNS. The spinal cord processes this information and sends a signal back through motor neurons in the PNS to move your hand away from the hot object. This coordinated response requires the collaboration of both the CNS and PNS to protect the body from harm. Choice A is incorrect because the reflex arc involves more than just the central nervous system. Choice B is incorrect because the reflex arc involves more than just the peripheral nervous system. Choice D is incorrect because the reflex arc also involves motor neurons, not just sensory neurons.