How many different types of nucleotides are there in DNA?
- A. one
- B. two
- C. four
- D. eight
Correct Answer: C
Rationale: The correct answer is 'C: four.' DNA is composed of four different types of nucleotides: adenine, thymine, guanine, and cytosine. These nucleotides pair up in specific combinations to form the genetic code. Choices 'A: one,' 'B: two,' and 'D: eight' are incorrect because DNA consists of a set of four distinct nucleotides, not one, two, or eight.
You may also like to solve these questions
During protein synthesis, what process uses an RNA strand to produce a complementary strand of DNA?
- A. Transcription
- B. Translation
- C. Transfer synthesis
- D. Codon synthesis
Correct Answer: A
Rationale: The correct answer is 'Transcription.' During transcription, an RNA strand is used to produce a complementary strand of DNA. This process is essential for converting the genetic information stored in DNA into RNA. Choice B, 'Translation,' is incorrect as it involves the synthesis of proteins from mRNA. Choice C, 'Transfer synthesis,' is not a recognized term in molecular biology. Choice D, 'Codon synthesis,' is also incorrect as it does not refer to the process of using an RNA strand to produce a complementary DNA strand.
Which organelle is responsible for organizing protein synthesis?
- A. Nucleus
- B. Ribosome
- C. Lysosome
- D. Vacuole
Correct Answer: B
Rationale: The correct answer is B: Ribosome. Ribosomes are responsible for organizing protein synthesis by assembling amino acids. They are the cellular machinery where proteins are synthesized. The other choices, such as the nucleus, lysosome, and vacuole, do not directly participate in protein synthesis. The nucleus contains DNA and controls cell activities, the lysosome is involved in digestion and waste removal, and the vacuole is responsible for storage and maintaining cell turgor pressure.
Which of the following are considered the most important molecules in biology?
- A. Carbohydrates, lipids, protein, and nucleic acids
- B. Carbohydrates, lipids, protein, and calcium
- C. Carbohydrates, lipids, protein, and sulfur
- D. Carbohydrates, lipids, protein, and iron
Correct Answer: A
Rationale: The correct answer is A: Carbohydrates, lipids, protein, and nucleic acids are considered the most important molecules in biology. Carbohydrates are essential for providing energy, lipids for storing energy and forming cell membranes, proteins for various structural and functional roles, and nucleic acids (DNA and RNA) for storing genetic information. Choices B, C, and D are incorrect because while carbohydrates, lipids, and proteins are crucial biomolecules, calcium, sulfur, and iron are not considered among the most important molecules in biology.
Why is DNA important for the metabolic activities of the cell?
- A. It initiates cellular mitosis.
- B. It provides cell wall stability.
- C. It increases glucose absorption.
- D. It controls the synthesis of enzymes.
Correct Answer: D
Rationale: DNA is important for the metabolic activities of the cell because it controls the synthesis of enzymes. Enzymes are essential for catalyzing metabolic reactions in the cell. Choices A, B, and C are incorrect because DNA is not directly involved in cellular mitosis, cell wall stability, or glucose absorption.
What are the two catabolic pathways that lead to cellular energy production?
- A. Fermentation and internal respiration
- B. Fermentation and external respiration
- C. Fermentation and cellular respiration
- D. Fermentation and anaerobic respiration
Correct Answer: C
Rationale: The correct answer is 'Fermentation and cellular respiration.' Fermentation is an anaerobic catabolic process that occurs in the absence of oxygen, producing limited amounts of ATP. Cellular respiration, on the other hand, is the aerobic catabolic pathway that occurs in the presence of oxygen and is the most efficient way of producing ATP. Choices A, B, and D are incorrect because internal respiration, external respiration, and anaerobic respiration are not the correct pathways leading to cellular energy production.