How many electrons are typically found in each shell of a neutral aluminum atom with 13 electrons in its electron cloud?
- A. 6 in the first shell, 7 in the second shell
- B. 2 in the first shell, 11 in the second shell
- C. 2 in the first shell, 8 in the second shell, 3 in the third shell
- D. 3 in the first shell, 5 in the second shell, 5 in the third shell
Correct Answer: C
Rationale: In a neutral aluminum atom with 13 electrons, the electron distribution typically follows the electron shell filling order based on the Aufbau principle. The first shell can hold a maximum of 2 electrons, the second shell can hold up to 8 electrons, and the third shell can hold up to 8 electrons as well. Therefore, the distribution would be 2 electrons in the first shell, 8 electrons in the second shell, and 3 electrons in the third shell, totaling 13 electrons. Choice A is incorrect as it exceeds the maximum number of electrons the shells can hold. Choice B is incorrect as it does not distribute the electrons correctly among the shells. Choice D is incorrect as it also does not distribute the electrons correctly among the shells.
You may also like to solve these questions
What is the most basic unit of structure in living things?
- A. Cell
- B. Organelle
- C. Oxygen
- D. Pigment
Correct Answer: A
Rationale: The cell is indeed the most basic unit of life, forming the foundation of all living organisms. Cells are the building blocks of all living things, containing organelles that perform specific functions. While oxygen is essential for life, it is not a structural unit. Similarly, pigment is a component found within cells but is not the fundamental unit of structure. Therefore, the correct answer is 'A: Cell.'
Which statement confirms that the cell membrane is selectively permeable?
- A. Receptors are found on a cell's surface.
- B. Cells communicate with each other using cell signals.
- C. Environmental changes can cause a cell to expand or shrink.
- D. Sodium ions must travel through ion channels to enter the cell.
Correct Answer: D
Rationale: The correct answer is D because selective permeability is demonstrated by the fact that specific ions, such as sodium, require ion channels to cross the cell membrane. This process allows the cell to control what substances can enter or exit, highlighting the selective nature of the cell membrane. Choices A, B, and C do not directly relate to the concept of selective permeability of the cell membrane. Receptors on a cell's surface (Choice A) are involved in cell signaling rather than selective permeability. Cell communication through signals (Choice B) and environmental changes affecting cell size (Choice C) are not directly related to the selective permeability of the cell membrane, which specifically refers to the regulation of substances passing through the membrane.
Which of the following hormones would cause skin color to become darker?
- A. Follicle-stimulating
- B. Growth-stimulating
- C. Thyroid-stimulating
- D. Melanocyte-stimulating
Correct Answer: D
Rationale: The correct answer is D, Melanocyte-stimulating. Melanocyte-stimulating hormone (MSH) stimulates melanocytes in the skin to produce more melanin, leading to darker skin pigmentation. Choices A, B, and C are incorrect as Follicle-stimulating hormone (FSH) stimulates follicle growth in the reproductive system, Growth-stimulating hormone is a vague term not specific to any known hormone, and Thyroid-stimulating hormone (TSH) stimulates the thyroid gland to produce thyroid hormones, not affecting skin color pigmentation.
What two factors enable some intercellular chemical signals to diffuse across cell membranes and bind to intracellular receptors?
- A. They are small and soluble.
- B. They are large and soluble.
- C. They are small and insoluble.
- D. They are large and insoluble.
Correct Answer: A
Rationale: The correct answer is A: 'They are small and soluble.' Small and soluble molecules can easily pass through cell membranes and bind to intracellular receptors. Being small allows them to pass through the membrane, while being soluble enables them to dissolve in the aqueous environment inside the cell. Choice B is incorrect because large molecules typically cannot pass through the cell membrane easily. Choices C and D are incorrect because insoluble molecules would not dissolve in the aqueous environment inside the cell, hindering their ability to bind to intracellular receptors.
At which of the following ages would ossification most likely take place to replace cartilage at the growth plate?
- A. 5
- B. 18
- C. 42
- D. 91
Correct Answer: B
Rationale: Ossification, the process where cartilage is replaced by bone, typically occurs during adolescence, around the age of 18. This is when the growth plates in the bones close, and the bones stop growing in length, leading to the replacement of cartilage with bone tissue. Choice A (5) is incorrect because ossification primarily occurs during adolescence, not early childhood. Choice C (42) is incorrect as ossification is completed well before this age, usually during the late teens or early twenties. Choice D (91) is incorrect as ossification is a process that occurs earlier in life, typically during adolescence, and is not a process that occurs in advanced age.