How many moles of potassium bromide are in 25 mL of a 4 M KBr solution?
- A. 0.035 mol
- B. 0.1 mol
- C. 0.18 mol
- D. 1.6 mol
Correct Answer: B
Rationale: To find the moles of potassium bromide in 25 mL of a 4 M KBr solution, we first need to convert the volume from milliliters to liters. 25 mL is equal to 0.025 L. Then, we use the formula moles = molarity x volume in liters. Substituting the values, moles = 4 M x 0.025 L = 0.1 mol. Therefore, there are 0.1 moles of KBr in 25 mL of a 4 M solution. Choice A, 0.035 mol, is incorrect as it does not properly calculate the moles. Choice C, 0.18 mol, and choice D, 1.6 mol, are also incorrect as they are not the result of the correct calculation based on the given molarity and volume.
You may also like to solve these questions
Which substance forms hydroxide ions when placed in water?
- A. Lemon juice
- B. Battery acid
- C. Vinegar
- D. Lye
Correct Answer: D
Rationale: The correct answer is D, lye. Lye, also known as sodium hydroxide (NaOH), is a strong base that forms hydroxide ions (OH-) when placed in water. When lye dissolves in water, it dissociates into sodium ions (Na+) and hydroxide ions, making it an alkaline substance. Lemon juice, battery acid, and vinegar do not form hydroxide ions when placed in water. Lemon juice contains citric acid, battery acid contains sulfuric acid, and vinegar contains acetic acid, none of which produce hydroxide ions when dissolved in water.
Which of these types of intermolecular force is weakest?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Hydrogen bonding
- D. Ionic bonding
Correct Answer: B
Rationale: The correct answer is B, London dispersion force. London dispersion forces are the weakest type of intermolecular force among the options provided. These forces arise from temporary fluctuations in electron distribution within molecules, leading to temporary dipoles. London dispersion forces are present in all molecules and are generally weaker than dipole-dipole interactions, hydrogen bonding, and ionic bonding. Dipole-dipole interactions are stronger than London dispersion forces as they involve permanent dipoles in molecules. Hydrogen bonding is stronger than both London dispersion and dipole-dipole interactions as it is a special type of dipole-dipole interaction that occurs when hydrogen is bonded to highly electronegative atoms like oxygen or nitrogen. Ionic bonding is the strongest type of intermolecular force among the options, but it is not the correct answer for the weakest type of force.
Cobalt-60 has a half-life of 5 years. If you start with 20 g of cobalt-60, how much is left after 10 years?
- A. 15 g
- B. 10 g
- C. 5 g
- D. 2.5 g
Correct Answer: C
Rationale: Cobalt-60's half-life of 5 years means that after 5 years, half of the initial amount remains. Therefore, after 10 years, a quarter (half of a half) of the initial amount will remain. Starting with 20 g, after 10 years, 5 g of cobalt-60 will be left. Choice A (15 g) is incorrect because it assumes a linear decrease, not considering the exponential decay characteristic of radioactive substances. Choice B (10 g) is incorrect as it overlooks that after 10 years, more decay has occurred. Choice D (2.5 g) is incorrect as it represents only an eighth of the initial amount after 10 years, not a quarter.
Which statement is true of a saturated solution?
- A. It has more solute than can dissolve in the solvent.
- B. It has less solute that can dissolve in the solvent.
- C. It has the maximum concentration of the solute dissolved in the solvent.
- D. It contains a precipitate that lowers the concentration of the solute in the solvent.
Correct Answer: C
Rationale: A saturated solution contains the maximum concentration of solute that can be dissolved in a specific amount of solvent at a particular temperature. Once a solution is saturated, adding more solute will not increase its concentration since the excess solute will not dissolve and will instead form a precipitate, indicating that the solution is at its maximum capacity. Choices A, B, and D are incorrect because a saturated solution has reached its limit in dissolving solute, so it cannot contain more solute than it can dissolve (choice A), less solute than it can dissolve (choice B), or a precipitate that lowers the concentration of the solute in the solvent (choice D).
Which of these represents a strong acid?
- A. CH₃COOH
- B. Hâ‚‚SOâ‚„
- C. NH₃
- D. KOH
Correct Answer: B
Rationale: Among the options provided, H₂SO₄ (sulfuric acid) represents a strong acid. Strong acids completely ionize in water to produce a high concentration of H+ ions. Sulfuric acid is a strong acid known for its ability to dissociate almost completely in water, making it a strong acid. Choice A, CH₃COOH (acetic acid), is a weak acid that only partially dissociates in water. Choices C and D, NH₃ (ammonia) and KOH (potassium hydroxide), are bases and not acids.