The body's first line of defense against pathogens is the innate immune system. Which of the following is NOT a component of the innate immune system?
- A. Physical barriers like skin and mucous membranes
- B. Phagocytes that engulf and destroy pathogens
- C. Inflammatory response to isolate and contain infection
- D. Production of antibodies specific to a particular pathogen
Correct Answer: D
Rationale: The production of antibodies specific to a particular pathogen is a function of the adaptive immune system, not the innate immune system. The innate immune system provides immediate, non-specific defense mechanisms against pathogens, including physical barriers, phagocytes, and inflammatory responses. Choices A, B, and C are all correct components of the innate immune system. Physical barriers like skin and mucous membranes act as the first line of defense, preventing pathogens from entering the body. Phagocytes are specialized cells that engulf and destroy pathogens, while the inflammatory response helps isolate and contain infections to prevent their spread.
You may also like to solve these questions
Which of the following terms refers to a muscle twitch, a single forceful contraction of a muscle fiber?
- A. Tetanus
- B. Tremor
- C. Fasciculation
- D. Rigidity
Correct Answer: C
Rationale: The correct term for a muscle twitch, a single forceful contraction of a muscle fiber, is 'Fasciculation' (choice C). Fasciculation specifically describes this phenomenon. 'Tetanus' (choice A) refers to sustained muscle contraction, 'Tremor' (choice B) indicates a shaky or quivering movement, and 'Rigidity' (choice D) denotes stiffness or inflexibility in muscles. Therefore, choices A, B, and D are incorrect in the context of a single forceful contraction of a muscle fiber.
Which part of the brain is responsible for regulating body temperature, hunger, and thirst, and is considered a key player in the endocrine system?
- A. Amygdala
- B. Hippocampus
- C. Hypothalamus
- D. Thalamus
Correct Answer: C
Rationale: The hypothalamus is responsible for regulating body temperature, hunger, and thirst, making it a vital component in maintaining homeostasis. It also plays a crucial role in the endocrine system by controlling the release of hormones from the pituitary gland. The amygdala primarily processes emotions, the hippocampus is associated with memory formation, and the thalamus acts as a relay station for sensory information. Therefore, the hypothalamus is the correct answer as it directly regulates the physiological processes mentioned in the question.
Where does fertilization, the fusion of sperm and egg, typically occur in the female reproductive system?
- A. Ovary
- B. Fallopian tube
- C. Uterus
- D. Vagina
Correct Answer: B
Rationale: Fertilization typically occurs in the fallopian tube. After ovulation, the egg is released from the ovary and travels through the fallopian tube, where it may encounter sperm for fertilization. The fallopian tube is the site where the sperm fertilizes the egg before the fertilized egg continues its journey towards the uterus for implantation. The ovary is where the egg is produced but not where fertilization occurs. The uterus is where the fertilized egg implants and develops into a fetus, not where fertilization takes place. The vagina is part of the birth canal and not the typical site for fertilization in the female reproductive system.
Which element shares the same group (family) on the periodic table with helium (He)?
- A. Neon (Ne)
- B. Boron (B)
- C. Carbon (C)
- D. Oxygen (O)
Correct Answer: A
Rationale: Neon (Ne) shares the same group (family) on the periodic table with helium (He). Both helium and neon belong to Group 18 (Noble Gases) due to their complete and stable outer electron shells, making them chemically inert. Boron (B), Carbon (C), and Oxygen (O) are not in the same group as helium. Boron is in Group 13, Carbon is in Group 14, and Oxygen is in Group 16 on the periodic table.
In nuclear fusion, where does the released energy originate from?
- A. The fission of heavy nuclei
- B. The binding energy released during the fusion of light nuclei
- C. Electronic transitions within atoms
- D. Matter-antimatter annihilation
Correct Answer: B
Rationale: The correct answer is B: 'The binding energy released during the fusion of light nuclei.' Nuclear fusion involves the combination of light nuclei to form a heavier nucleus, releasing energy in the process. This energy arises from the binding energy that keeps the nucleus intact. As lighter nuclei fuse, they create a more stable nucleus, and the excess energy is emitted as radiation. This fundamental process is the primary source of energy in stars and holds promise as a potential future energy source on Earth. Choices A, C, and D are incorrect. Choice A, 'The fission of heavy nuclei,' is related to nuclear fission, not fusion. Choice C, 'Electronic transitions within atoms,' refers to energy release in atomic transitions, not nuclear fusion. Choice D, 'Matter-antimatter annihilation,' is a process where matter and antimatter collide, converting their mass into energy, but it is not the energy source for nuclear fusion.
Nokea