The difference between diploid and haploid is as follows:
- A. Diploid organisms are multicellular
- B. Diploid cells are somatic
- C. Diploid cells have two sets of homologous chromosomes
- D. More than one of the above is true
Correct Answer: D
Rationale: Option B correctly states that diploid cells are somatic cells that make up the body tissues and organs in an organism, while haploid cells are gametes involved in sexual reproduction. Option C accurately differentiates diploid and haploid cells based on their chromosome sets - diploid cells have two sets of homologous chromosomes (one from each parent), whereas haploid cells have one set of unpaired chromosomes. Therefore, the correct choice is D, as both statements in options B and C are accurate descriptions of the differences between diploid and haploid cells. Option A is incorrect because diploid and haploid refer to the number of sets of chromosomes in a cell, not whether the organism is multicellular or not.
You may also like to solve these questions
Which of the following is true of heterozygous traits?
- A. They are haploid
- B. They are denoted AA
- C. They are denoted aa
- D. They are denoted Aa
Correct Answer: D
Rationale: Heterozygous traits are denoted by having two different alleles for a particular gene, represented as Aa. This means that they are not haploid (A), not denoted AA (B), and not denoted aa (C). Therefore, the correct answer is D, as heterozygous traits are represented as Aa.
A child is sick. They have a body temperature that exceeds 37ºC. The body senses this and begins to sweat in order to lower the temperature. What is this an example of?
- A. Positive feedback loop
- B. Negative feedback loop
- C. Both
- D. None of the above
Correct Answer: B
Rationale: This is an example of a negative feedback loop. In a negative feedback loop, the body's response (sweating) works to counteract the initial stimulus of a high body temperature by cooling the body down. The goal is to return the body to homeostasis, maintaining a stable internal environment. Positive feedback loops amplify the initial stimulus rather than counteracting it, which is not the case here. Therefore, choices A and C are incorrect. Choice D is also incorrect as the situation described fits the characteristics of a negative feedback loop.
Which of the following types of hormones can diffuse through the cell membrane to bind to receptors inside the cell and stimulate a chemical response to a target cell?
- A. fat-soluble hormones
- B. amino acid derivatives
- C. hydrophilic hormones
- D. water-soluble hormones
Correct Answer: A
Rationale: The correct answer is A: fat-soluble hormones. Fat-soluble hormones are able to diffuse through the cell membrane to bind to receptors inside the cell. This is because they are lipophilic, allowing them to cross the lipid bilayer easily. Once inside the cell, fat-soluble hormones can directly affect gene expression or cell function.
Choice B, amino acid derivatives, and choice C, hydrophilic hormones, are not able to diffuse through the cell membrane as they are not lipophilic. Therefore, they cannot bind to receptors inside the cell. Choice D, water-soluble hormones, also cannot diffuse through the cell membrane as it is hydrophilic, making it unable to reach receptors inside the cell.
The two catabolic pathways that lead to cellular energy production are:
- A. fermentation and protein synthesis
- B. cellular respiration and glycolysis
- C. fermentation and glycolysis
- D. cellular respiration and fermentation
Correct Answer: D
Rationale: The correct answer is D: cellular respiration and fermentation. Cellular respiration involves the breakdown of glucose in the presence of oxygen to produce ATP, which is the primary source of energy for cells. Fermentation, on the other hand, occurs in the absence of oxygen and produces ATP through glycolysis followed by specific fermentation pathways. Choices A, B, and C are incorrect. Protein synthesis is a biosynthetic process, not a catabolic pathway for energy production. Glycolysis is a common step in both cellular respiration and fermentation, so it is not a pair of distinct catabolic pathways. Therefore, the most accurate pairing of catabolic pathways for cellular energy production is cellular respiration and fermentation.
Why is polarity the most important characteristic of water?
- A. the results of the polarity are hydrogen bonding, a high specific heat value, and its versatile solvent properties
- B. the results of the polarity are covalent bonding, a low specific heat value, and its versatile solvent properties
- C. the results of the polarity are ionic bonding, a high specific heat value, and its versatile solvent properties
- D. the results of the polarity are hydrogen bonding, a low specific heat value, and its versatile solvent properties
Correct Answer: A
Rationale: Polarity is the most important characteristic of water because it results in hydrogen bonding, a high specific heat value, and its versatile solvent properties. These unique properties enable water to form hydrogen bonds with other substances, resist temperature changes, and dissolve a wide variety of solutes, making it essential for life processes. Choice B is incorrect because water exhibits hydrogen bonding, not covalent bonding. Choice C is incorrect as water does not form ionic bonds. Choice D is incorrect because water has a high, not low, specific heat value, which is vital for its role in temperature regulation.