The numbers of protons, neutrons, and electrons in K+ are: A) 20 p, 19 n, 19 e
- A. 20 p, 19 n, 20 e
- B. 19 p, 20 n, 20 e
- C. 19 p, 20 n, 19 e
- D. 19 p, 20 n, 18 e
Correct Answer: C
Rationale: The correct answer is C: 19 p, 20 n, 19 e. K+ has an atomic number of 19, indicating 19 protons. Since it is a potassium ion with a +1 charge, it lost one electron, giving it 19 electrons instead of the usual 20. The number of neutrons is found by subtracting the atomic number from the mass number (39 for potassium) to get 20 neutrons. Option A is incorrect due to the incorrect number of electrons. Option B has the incorrect number of protons. Option D has the incorrect number of electrons.
You may also like to solve these questions
Convert 9 kg to lb. (1 kg = 205 lb)
- A. 17 lbs
- B. 1.7 lbs
- C. 3.6 lbs
- D. 0.017 lbs
Correct Answer: A
Rationale: To convert 9 kg to lb, we multiply 9 kg by the conversion factor of 2.205 lb/kg.
9 kg * 2.205 lb/kg = 19.845 lb, which is approximately 20 lb.
Among the choices, 17 lbs (option A) is the closest to 20 lb, making it the correct answer.
Option B (1.7 lbs), C (3.6 lbs), and D (0.017 lbs) are all significantly lower and do not match the conversion calculation.
Which one of the following statements about atomic structure is false?
- A. An atom is mostly empty space.
- B. Almost all of the mass of the atom is concentrated in the nucleus.
- C. The protons and neutrons in the nucleus are very tightly packed.
- D. The number of protons and neutrons is always the same in the neutral atom.
Correct Answer: D
Rationale: The correct answer is D because the statement that the number of protons and neutrons is always the same in a neutral atom is false. In a neutral atom, the number of protons equals the number of electrons, not the number of neutrons. Neutrons are not always equal to the number of protons.
A: An atom is mostly empty space - Correct. This is true because the nucleus is very tiny compared to the overall size of the atom.
B: Almost all of the mass of the atom is concentrated in the nucleus - Correct. This is true because protons and neutrons have much more mass than electrons.
C: The protons and neutrons in the nucleus are very tightly packed - Correct. This is true because protons and neutrons are densely packed within the nucleus.
During a physics experiment, an electron is accelerated to 93 percent of the speed of light. What is the speed of the electron in miles per hour? (speed of light = 00 108 m/s, 1 km = 6214 mi)
- A. 2.8 108 mi/h
- B. 6.2 1011 mi/h
- C. 6.7 108 mi/h
- D. 1.0 107 mi/h
Correct Answer: C
Rationale: The correct answer is C: 6.7 x 10^8 mi/h. To calculate the speed of the electron in miles per hour, we first convert the speed of light from m/s to mi/h using the conversion factor 1 km = 6214 mi. The speed of light is approximately 6.71 x 10^8 mi/h. Since the electron is at 93% of the speed of light, we multiply the speed of light by 0.93 to get the speed of the electron, which is approximately 6.25 x 10^8 mi/h. The closest choice is C: 6.7 x 10^8 mi/h.
Choice A: 2.8 x 10^8 mi/h - This is incorrect as it is too low compared to the calculated speed.
Choice B: 6.2 x 10^11 mi/h - This is incorrect as it is too high compared to the calculated speed.
Choice
The density of liquid mercury is 6 g/mL. What is its density in units of ? (54 cm = 1 in., 205 lb = 1 kg)
- A. 1.57 10 2
- B. 4.91 10 1
- C. 1.01 10 1
- D. 7.62 10 2
Correct Answer: C
Rationale: To find the density of liquid mercury in units of g/cm³, we need to convert the density from g/mL to g/cm³. The conversion factor is 1 mL = 1 cm³. Given the density of mercury as 6 g/mL, it is equivalent to 6 g/cm³. Therefore, the correct answer is 1.01 x 10¹ g/cm³ (choice C).
Choice A: 1.57 x 10² is too large for the density of liquid mercury.
Choice B: 4.91 x 10¹ is incorrect as it does not match the calculated density.
Choice D: 7.62 x 10² is significantly higher than the actual density of liquid mercury.
The pressure of the earth's atmosphere at sea level is . What is the pressure when expressed in ? (54 cm = 1 in., 205 lb = 1 kg)
- A. 2.62 105
- B. 1.03 107
- C. 5.02 104
- D. 4.30 100
Correct Answer: A
Rationale: The correct answer is A: 2.62 × 10^5. To convert atmospheric pressure from inches of mercury to pascals, we use the conversion factor 1 in. = 2.54 cm and the standard atmospheric pressure at sea level (29.92 in. Hg). First, convert 29.92 in. Hg to cm Hg (29.92 in. × 2.54 cm/in.), then convert cm Hg to Pa (1 atm = 101325 Pa). Follow these steps to get the correct answer. Choice B (1.03 × 10^7) is incorrect as it is too high. Choice C (5.02 × 10^4) is incorrect as it is too low. Choice D (4.30 100) is not a valid numerical expression.