The pancreas secretes digestive enzymes into the small intestine. What enzyme breaks down proteins into amino acids?
- A. Pepsin
- B. Lipase
- C. Amylase
- D. Trypsin
Correct Answer: D
Rationale: Trypsin is the correct enzyme that breaks down proteins into amino acids. It is produced by the pancreas and released into the small intestine to facilitate protein digestion. Pepsin is an enzyme from the stomach that also breaks down proteins, amylase targets carbohydrates, and lipase works on fats. In this context, since the question specifies the pancreas and small intestine, the correct answer is Trypsin as it is the pancreatic enzyme responsible for protein breakdown in the small intestine.
You may also like to solve these questions
Which organelle is responsible for the final stages of protein modification and packaging for secretion in animal cells?
- A. Rough endoplasmic reticulum (RER)
- B. Smooth endoplasmic reticulum (SER)
- C. Ribosomes
- D. Golgi apparatus
Correct Answer: D
Rationale: The Golgi apparatus is responsible for the final stages of protein modification and packaging for secretion in animal cells. After proteins are synthesized in the rough endoplasmic reticulum (RER), they are transported to the Golgi apparatus for further processing, sorting, and packaging before being sent to their final destination within or outside the cell. The smooth endoplasmic reticulum (SER) is mainly involved in lipid metabolism and detoxification processes, not protein modification. Ribosomes are the cellular organelles responsible for protein synthesis, not the final stages of protein modification and packaging for secretion, which is the role of the Golgi apparatus.
What phenomenon occurs when light passes through a medium without changing direction, such as when passing through a window?
- A. Diffraction
- B. Reflection
- C. Dispersion
- D. Transmission
Correct Answer: D
Rationale: The correct answer is 'Transmission.' Transmission refers to the phenomenon where light passes through a medium without changing direction, as observed when light passes through a window. Diffraction involves the bending of light waves around obstacles, reflection is the bouncing back of light waves from a surface, and dispersion is the separation of light into its different colors. In this case, the question specifically asks about the situation where light passes through a medium without changing direction, which aligns with the process of transmission.
Which of the following is an example of an aromatic compound?
- A. Ethanol
- B. Toluene
- C. Acetone
- D. Butanal
Correct Answer: B
Rationale: Toluene is an aromatic compound due to its benzene ring structure, which satisfies the criteria of aromaticity. Aromatic compounds contain conjugated pi electrons in a ring structure, providing extra stability. Ethanol, acetone, and butanal are not aromatic compounds as they do not possess a benzene ring or meet the aromaticity criteria. Ethanol is an alcohol, acetone is a ketone, and butanal is an aldehyde, none of which have the characteristic benzene ring structure of aromatic compounds.
Why do Neon (Ne) and Helium (He) belong to Group 18 (Noble Gases)?
- A. Electromagnetism
- B. Gravity
- C. Strong nuclear force
- D. Weak nuclear force
Correct Answer: A
Rationale: Neon (Ne) and Helium (He) belong to Group 18 (Noble Gases) because they have complete and stable outer electron shells. The stability of these outer electron shells is due to the balance of attractive forces between the positively charged protons in the nucleus and the negatively charged electrons in the outer shell. This balance is maintained by the electromagnetic force, which is responsible for holding atoms together and determining their chemical properties. Gravity (Choice B) is a force of attraction between objects with mass and is not responsible for the stability of electron shells. The strong nuclear force (Choice C) and weak nuclear force (Choice D) are forces that act within the nucleus of an atom and are not directly related to the stability of outer electron shells in determining an element's group in the periodic table.
What property of a substance refers to its ability to undergo a chemical change and form new substances with different properties?
- A. Density
- B. Mass
- C. Reactivity
- D. Volume
Correct Answer: C
Rationale: Reactivity is the property of a substance that describes its ability to undergo a chemical change and form new substances with different properties. Density (A), mass (B), and volume (D) are physical properties of a substance and do not directly relate to its ability to undergo chemical changes. Density is mass per unit volume, mass is the amount of matter in a substance, and volume is the space occupied by a substance.