Viscosity, μ, is a transport property of a fluid that reflects its:
- A. Inertia
- B. Resistance to flow
- C. Compressibility
- D. Buoyancy generation
Correct Answer: B
Rationale: Viscosity refers to a fluid's resistance to flow. A fluid with high viscosity (like honey) flows slowly, while a fluid with low viscosity (like water) flows more easily. It is a measure of internal friction in the fluid. Choice A, 'Inertia,' is incorrect as inertia is the tendency of an object to resist changes in its state of motion. Choice C, 'Compressibility,' is incorrect as it refers to the ability of a fluid to be compressed. Choice D, 'Buoyancy generation,' is incorrect as it relates to the upward force exerted by a fluid that opposes the weight of an immersed object.
You may also like to solve these questions
In the mechanical power equation P = E / t, power is measured in ___________.
- A. ohms
- B. Joules
- C. volts
- D. watts
Correct Answer: D
Rationale: In the mechanical power equation P = E / t, power is measured in watts. Watts are the standard unit of power in the International System of Units (SI), named after the Scottish engineer James Watt. Watts are defined as joules per second, reflecting the rate at which energy is transferred or converted. Ohms (choice A) are the unit of electrical resistance, Joules (choice B) are the unit of energy, and volts (choice C) are the unit of electric potential difference. Therefore, the correct answer is watts as it directly relates to power in the given equation.
A 780-watt refrigerator is powered by a 120-volt power source. What is the current being drawn?
- A. 660 amperes
- B. 150 amperes
- C. 6.5 amperes
- D. 0.15 amperes
Correct Answer: C
Rationale: To calculate the current being drawn by the refrigerator, you can use the formula: Current (I) = Power (P) / Voltage (V). Given that the power of the refrigerator is 780 watts and the voltage is 120 volts, you can plug these values into the formula to find the current: I = 780 watts / 120 volts = 6.5 amperes. Therefore, the current being drawn by the 780-watt refrigerator is 6.5 amperes. Choice A, 660 amperes, is incorrect as it is significantly higher than the correct answer. Choice B, 150 amperes, is also incorrect and too high. Choice D, 0.15 amperes, is incorrect as it is too low. The correct answer is 6.5 amperes.
Which mathematical quantity is scalar?
- A. Distance
- B. Velocity
- C. Acceleration
- D. Displacement
Correct Answer: A
Rationale: Distance is a scalar quantity because it has only magnitude and no direction. It is simply the total length of the path travelled by an object. Scalars are quantities that are fully described by their magnitude alone, without any reference to direction. Velocity and acceleration are vector quantities as they have both magnitude and direction. Displacement is also a vector quantity as it is the change in position of an object and includes both magnitude and direction.
According to the zeroth law of thermodynamics, two systems are in thermal equilibrium if:
- A. They have the same pressure.
- B. They have the same volume.
- C. They have the same temperature.
- D. They are made of the same material.
Correct Answer: C
Rationale: The correct answer is C: "They have the same temperature." The zeroth law of thermodynamics states that if two systems are each in thermal equilibrium with a third system, they are also in thermal equilibrium with each other. This implies that they have the same temperature.
Choice A is incorrect because pressure is not the determining factor for thermal equilibrium. Choice B is incorrect because volume alone does not dictate thermal equilibrium. Choice D is incorrect as the materials the systems are made of do not determine thermal equilibrium according to the zeroth law of thermodynamics.
The Reynolds number (Re) is a dimensionless quantity used to characterize:
- A. Fluid density
- B. Flow regime (laminar vs. turbulent)
- C. Surface tension effects
- D. Buoyancy force magnitude
Correct Answer: B
Rationale: The Reynolds number is a dimensionless quantity used to characterize the flow regime, specifically whether it is laminar (smooth) or turbulent (chaotic). It depends on the velocity of the fluid, its characteristic length (such as pipe diameter), and its viscosity. A low Reynolds number indicates laminar flow, while a high Reynolds number suggests turbulence. Choices A, C, and D are incorrect because the Reynolds number is not related to fluid density, surface tension effects, or buoyancy force magnitude.