What are the two catabolic pathways that lead to cellular energy production?
- A. Fermentation and internal respiration
- B. Fermentation and external respiration
- C. Fermentation and cellular respiration
- D. Fermentation and anaerobic respiration
Correct Answer: C
Rationale: The correct answer is 'Fermentation and cellular respiration.' Fermentation is an anaerobic catabolic process that occurs in the absence of oxygen, producing limited amounts of ATP. Cellular respiration, on the other hand, is the aerobic catabolic pathway that occurs in the presence of oxygen and is the most efficient way of producing ATP. Choices A, B, and D are incorrect because internal respiration, external respiration, and anaerobic respiration are not the correct pathways leading to cellular energy production.
You may also like to solve these questions
Why is DNA important for the metabolic activities of the cell?
- A. It initiates cellular mitosis.
- B. It provides cell wall stability.
- C. It increases glucose absorption.
- D. It controls the synthesis of enzymes.
Correct Answer: D
Rationale: DNA is important for the metabolic activities of the cell because it controls the synthesis of enzymes. Enzymes are essential for catalyzing metabolic reactions in the cell. Choices A, B, and C are incorrect because DNA is not directly involved in cellular mitosis, cell wall stability, or glucose absorption.
Which of the following structures is not directly involved in translation?
- A. tRNA
- B. mRNA
- C. ribosome
- D. DNA
Correct Answer: D
Rationale: The correct answer is 'D: DNA.' DNA is not directly involved in translation, which is the process of synthesizing proteins from mRNA. tRNA carries amino acids to the ribosome, mRNA provides the template for protein synthesis, and ribosomes are the cellular machinery where translation occurs. DNA's main role is in transcription, where it serves as the template for mRNA synthesis, not in translation.
How many different types of nucleotides are there in DNA?
- A. one
- B. two
- C. four
- D. eight
Correct Answer: C
Rationale: The correct answer is 'C: four.' DNA is composed of four different types of nucleotides: adenine, thymine, guanine, and cytosine. These nucleotides pair up in specific combinations to form the genetic code. Choices 'A: one,' 'B: two,' and 'D: eight' are incorrect because DNA consists of a set of four distinct nucleotides, not one, two, or eight.
During protein synthesis, what process creates a complementary strand of RNA from a DNA template?
- A. Transcription
- B. Translation
- C. Transformation
- D. Replication
Correct Answer: A
Rationale: The correct answer is 'Transcription.' During protein synthesis, transcription is the process that creates a complementary RNA strand from a DNA template. This process involves the synthesis of mRNA using DNA as a template. Choice B, 'Translation,' is incorrect as it is the process where the genetic code carried by mRNA is decoded to produce a specific polypeptide chain. Choice C, 'Transformation,' is not related to the synthesis of RNA from a DNA template. Choice D, 'Replication,' is the process of copying DNA to produce an identical DNA molecule, not RNA.
Which of the following is not found within a bacterial cell?
- A. mitochondria
- B. DNA
- C. vesicles
- D. ribosome
Correct Answer: A
Rationale: The correct answer is A: mitochondria. Mitochondria are not found in bacterial cells. Bacterial cells lack membrane-bound organelles like mitochondria, which are commonly found in eukaryotic cells. Choices B, C, and D are all components that can be found within a bacterial cell. Bacterial cells contain DNA as their genetic material, vesicles for various cellular functions, and ribosomes for protein synthesis. Therefore, the presence of mitochondria is the distinguishing factor that is not found in bacterial cells, making option A the correct answer.
Nokea