What creates a dipole in a covalent bond?
- A. Unequal sharing of electrons
- B. Equal sharing of electrons
- C. Exchange of electrons
- D. Transfer of electrons
Correct Answer: A
Rationale: A dipole is created in a covalent bond when there is an unequal sharing of electrons between the atoms involved. This results in a partial positive charge on one atom and a partial negative charge on the other, leading to a separation of charges and the formation of a dipole. Choices B, C, and D are incorrect because a dipole is specifically formed due to unequal sharing of electrons, not equal sharing, exchange, or transfer of electrons in a covalent bond.
You may also like to solve these questions
What is the chemical reaction that involves breaking down a compound into component parts?
- A. Decomposition
- B. Synthesis
- C. Combustion
- D. Single replacement
Correct Answer: A
Rationale: Decomposition is the correct answer because in a decomposition reaction, a compound is broken down into simpler substances. This type of reaction involves the splitting of a compound into its component parts, often through the use of heat, light, or electricity. Synthesis (choice B) is the opposite process where simpler substances are combined to form a more complex compound. Combustion (choice C) is a reaction involving rapid oxidation often accompanied by heat and light. Single replacement (choice D) is a reaction where one element replaces another in a compound.
What are the columns of the periodic table called?
- A. Periods
- B. Families
- C. Groups
- D. Rows
Correct Answer: C
Rationale: In the periodic table, columns are referred to as groups, not periods, families, or rows. These groups share similar chemical properties due to the arrangement of elements within each group, which is based on the number of valence electrons. The vertical columns help classify elements with similar characteristics. Periods refer to the rows of the periodic table, while families or groups are the vertical columns.
Which type of chemical bond is the strongest?
- A. Ionic
- B. Hydrogen
- C. Covalent
- D. Metallic
Correct Answer: C
Rationale: Covalent bonds, especially those formed between non-metals, are the strongest type of chemical bond. In covalent bonds, atoms share electrons, creating a strong bond that requires a significant amount of energy to break.
Choice A, ionic bonds, are strong but generally weaker than covalent bonds as they involve the transfer of electrons rather than sharing. Choice B, hydrogen bonds, are relatively weak intermolecular forces, not true chemical bonds. Choice D, metallic bonds, are strong but typically not as strong as covalent bonds. Metallic bonds involve a 'sea of electrons' shared between metal atoms, providing strength but with less directional bonding compared to covalent bonds.
What charge do Group VIA elements typically have?
- A. -1
- B. -2
- C. -3
Correct Answer: B
Rationale: Group VIA elements, also known as Group 16 elements, typically have a charge of -2. This is because they have 6 valence electrons and tend to gain 2 electrons to achieve a stable octet configuration, resulting in a -2 charge. Choice A (-1) is incorrect as Group VIA elements need to gain 2 electrons for stability, not just 1. Choice C (-3) is incorrect because Group VIA elements do not need to gain 3 electrons to achieve stability. Choice D (0) is incorrect as Group VIA elements need to gain electrons to reach a stable configuration, resulting in a negative charge.
Which of the following can act as a catalyst in a chemical reaction?
- A. Enzyme
- B. Light
- C. Water
- D. Metal
Correct Answer: A
Rationale: Enzymes are biological catalysts that speed up chemical reactions without being consumed. They lower the activation energy required for the reaction to occur, facilitating and accelerating the process. Choice B, Light, is not a catalyst but can sometimes trigger reactions by providing energy. Choice C, Water, and choice D, Metal, are not catalysts but can participate in reactions as reactants.
Nokea