What effect does increasing the surface area of a reactant have?
- A. Decreases the reaction rate
- B. Has no effect
- C. Increases the reaction rate
- D. Stops the reaction
Correct Answer: C
Rationale: Increasing the surface area of a reactant leads to more particles being exposed to the reaction, which in turn increases the reaction rate. This is because a larger surface area provides more sites for collisions between reacting particles, resulting in a higher frequency of successful collisions and thus accelerating the reaction. Choice A, 'Decreases the reaction rate,' is incorrect because increasing surface area actually accelerates the reaction. Choice B, 'Has no effect,' is incorrect as increasing surface area does have a significant effect on the reaction rate. Choice D, 'Stops the reaction,' is incorrect as increasing surface area does not stop the reaction but rather enhances it.
You may also like to solve these questions
Which branch of chemistry deals with the quantities and numeric relationships between compounds in a chemical reaction?
- A. Stoichiometry
- B. Molecular chemistry
- C. Atomic chemistry
- D. Thermodynamics
Correct Answer: A
Rationale: Stoichiometry is the branch of chemistry that deals with the quantitative relationships between reactants and products in chemical reactions. It involves the calculation of quantities of substances consumed and produced in a chemical reaction based on the balanced chemical equation.
Choice B, 'Molecular chemistry,' is incorrect as it focuses on the structure, properties, and reactions of molecules. Choice C, 'Atomic chemistry,' is incorrect as it primarily deals with the study of atoms and their interactions. Choice D, 'Thermodynamics,' is incorrect as it pertains to the study of energy and heat transfer in chemical and physical processes.
Which type of chemical reaction involves two ionic compounds where the reactants yield 'switched partners'?
- A. Single replacement
- B. Double replacement
- C. Synthesis
- D. Decomposition
Correct Answer: B
Rationale: The correct answer is 'Double replacement.' In a double replacement reaction, two ionic compounds react by exchanging ions, resulting in the formation of two new compounds where the positive and negative ions have 'switched partners.' This type of reaction is characterized by the exchange of ions between the reactants. Choice A, 'Single replacement,' involves an element replacing another in a compound, not the exchange of partners like in the given scenario. Choice C, 'Synthesis,' is the combination of two or more substances to form a more complex product, not involving the exchange of partners. Choice D, 'Decomposition,' is the breakdown of a compound into simpler substances, which is different from the scenario described in the question.
What is the role of a catalyst in a chemical reaction?
- A. Slows down the reaction
- B. Has no effect
- C. Speeds up the reaction
- D. Stops the reaction
Correct Answer: C
Rationale: A catalyst speeds up a chemical reaction by lowering the activation energy required for the reaction to occur. It does not get consumed in the reaction and remains unchanged at the end, allowing it to facilitate multiple reaction cycles. Choice A is incorrect because a catalyst actually speeds up the reaction. Choice B is incorrect because catalysts do have an effect by accelerating the reaction. Choice D is incorrect because catalysts do not stop the reaction, but rather increase the reaction rate.
What are the products of the combustion of a hydrocarbon?
- A. Water and carbon dioxide
- B. Water and oxygen
- C. Hydrogen and carbon monoxide
- D. Carbon dioxide and oxygen
Correct Answer: A
Rationale: When a hydrocarbon undergoes combustion, it reacts with oxygen to produce water and carbon dioxide as the main products. The general chemical equation for the combustion of a hydrocarbon is hydrocarbon + oxygen → carbon dioxide + water. Therefore, the correct answer is 'Water and carbon dioxide.' Choices B, C, and D are incorrect because water and carbon dioxide are the primary products of hydrocarbon combustion, not water and oxygen, hydrogen and carbon monoxide, or carbon dioxide and oxygen.
What type of radiation is high-energy electromagnetic radiation that lacks charge and mass?
- A. Beta
- B. Alpha
- C. Gamma
- D. Delta
Correct Answer: C
Rationale: Gamma radiation is a form of high-energy electromagnetic radiation that does not possess charge or mass. This type of radiation is commonly used in various fields due to its penetrating ability and lack of charge or mass, making it different from alpha and beta radiation, which consist of charged particles. Therefore, the correct answer is C - Gamma. Choices A and B are incorrect as they refer to alpha and beta radiation, which are composed of charged particles. Choice D, Delta, is not a type of radiation.
Nokea