What is 119 K in degrees Celsius?
- A. 32°C
- B. -154°C
- C. 154°C
- D. 0°C
Correct Answer: B
Rationale: To convert Kelvin (K) to Celsius (°C), you subtract 273.15 from the Kelvin value. Therefore, 119 K - 273.15 = -154.15°C. The negative sign indicates that the temperature is below freezing. When rounded to the nearest whole number, -154.15°C is approximately -154°C. Choice A and Choice C are incorrect as they do not reflect the correct conversion from Kelvin to Celsius. Choice D is incorrect as it corresponds to the freezing point of water in Celsius, not the conversion of 119 K.
You may also like to solve these questions
Which of the following is a colligative property of a solution?
- A. Freezing point depression
- B. Viscosity
- C. Surface tension
- D. Boiling point elevation
Correct Answer: A
Rationale: A colligative property is a property that depends on the number of solute particles in a solution, not on the identity of the solute particles. Freezing point depression is one such property, where adding a solute to a solvent lowers the freezing point of the solution compared to the pure solvent. This phenomenon occurs because the presence of solute particles disrupts the formation of the regular crystal lattice structure, requiring a lower temperature for solidification to occur. Choices B, C, and D are not colligative properties. Viscosity and surface tension are not dependent on the number of solute particles but on intermolecular forces and molecular interactions. Boiling point elevation is another colligative property, but in this case, the question asked for a colligative property of a solution, making freezing point depression the correct answer.
In which state of matter are particles packed tightly together in a fixed position?
- A. Liquid
- B. Solid
- C. Gas
- D. Plasma
Correct Answer: B
Rationale: In a 'solid' state, particles are tightly packed in fixed positions, maintaining a definite shape and volume. This arrangement allows solids to maintain a rigid structure. Liquids have particles that are close together but can move past each other, giving them the ability to flow and take the shape of their container. Gases have particles that are far apart and move freely, leading to their ability to expand to fill any container. Plasma is an ionized gas where particles have high energy levels and are not packed tightly together, making it an uncommon state of matter on Earth.
What is the name of the bond formed when two atoms share electrons?
- A. Covalent bond
- B. Ionic bond
- C. Metallic bond
- D. Hydrogen bond
Correct Answer: A
Rationale: A covalent bond is formed when two atoms share electrons, creating a stable electron configuration. This sharing allows both atoms to achieve a full outer shell of electrons, leading to a stable molecule. In contrast, an ionic bond involves the transfer of electrons from one atom to another, resulting in the formation of ions with opposite charges. Metallic bonds are formed between metal atoms and involve a 'sea of electrons' that are delocalized and free to move. Hydrogen bonds are a type of intermolecular force, not a true chemical bond, and occur between a hydrogen atom and a highly electronegative atom like oxygen or nitrogen.
What is the chemical symbol for sodium?
- A. N
- B. Na
- C. Cl
- D. H
Correct Answer: B
Rationale: The correct chemical symbol for sodium is 'Na.' In the periodic table, sodium is represented by the symbol 'Na,' derived from its Latin name 'natrium.' The symbol 'N' represents nitrogen, not sodium. 'Cl' is the symbol for chlorine, and 'H' is the symbol for hydrogen. Therefore, 'Na' is the correct chemical symbol for sodium.
What is the name of the force that holds ionic compounds together?
- A. Covalent bonds
- B. Ionic bonds
- C. Hydrogen bonds
- D. Metallic bonds
Correct Answer: B
Rationale: Ionic bonds are the forces that hold ionic compounds together. In ionic compounds, positively and negatively charged ions are held together by electrostatic forces of attraction, forming a stable structure. Covalent bonds involve the sharing of electrons between atoms, not the transfer of electrons like in ionic bonds. Hydrogen bonds are a type of intermolecular force, not the primary force in holding ionic compounds together. Metallic bonds are found in metals and involve a 'sea of electrons' that hold metal atoms together, different from the electrostatic attraction between ions in ionic compounds.