What is the common name for the organic compound CH₃OH?
- A. Methane
- B. Ethanol
- C. Methanol
- D. Butanol
Correct Answer: C
Rationale: The common name for the organic compound CH₃OH is methanol. Methane (A) has the chemical formula CH₄. Ethanol (B) corresponds to the formula C₂H₅OH. Butanol (D) is a compound with the formula C₄H₉OH. The correct answer is C - Methanol, which is the common name for CH₃OH, while the other options correspond to different organic compounds with distinct formulas. Therefore, methanol is the correct choice when identifying the common name for the compound CH₃OH.
You may also like to solve these questions
Which process allows for the movement of large molecules, such as proteins and polysaccharides, across the cell membrane?
- A. Endocytosis
- B. Exocytosis
- C. Active transport
- D. Facilitated diffusion
Correct Answer: A
Rationale: Endocytosis is the process by which cells engulf large molecules or particles by wrapping the cell membrane around them to form a vesicle that is brought into the cell. This mechanism facilitates the movement of large molecules like proteins and polysaccharides across the cell membrane. Exocytosis involves the release of large molecules or particles from the cell, opposite to the scenario described in the question. Active transport requires energy to move molecules against their concentration gradient and is not primarily used for transporting proteins and polysaccharides. Facilitated diffusion entails the movement of molecules aided by transport proteins but is not the primary mechanism for transporting large molecules such as proteins and polysaccharides.
When is a solution considered saturated?
- A. More solute cannot be dissolved
- B. The solvent starts to evaporate
- C. The solution becomes cloudy
- D. It reaches a specific temperature
Correct Answer: A
Rationale: A solution is considered saturated when it has dissolved the maximum amount of solute that can be dissolved at a given temperature. At this point, adding more solute will not result in further dissolution, indicating that the solution is saturated. The other choices are incorrect because the solvent evaporating or the solution becoming cloudy are not definitive indicators of a saturated solution. Additionally, reaching a specific temperature does not determine saturation, as the solubility of a solute can vary with temperature. Therefore, the correct answer is that more solute cannot be dissolved in a saturated solution.
In the electron cloud model, electrons occupy specific energy levels around the nucleus with varying probabilities. This model depicts electrons existing in distinct energy levels, not fixed orbits, with probabilities of finding them in specific regions.
- A. 2 protons and 6 neutrons
- B. 2 filled s orbitals and 6 filled p orbitals
- C. 2s orbitals with 2 and 6 electrons, respectively
- D. 4 filled electron shells
Correct Answer: C
Rationale: The electron cloud model describes electrons existing in distinct energy levels, not fixed orbits. Option C correctly describes the electron configuration of an atom with 2s orbitals containing 2 electrons and 6 electrons in the 2p orbitals. This configuration aligns with the electron cloud model where electrons are found in specific energy levels with varying probabilities. Options A, B, and D do not accurately represent the electron cloud model.
Which of the following is NOT a function of the skeletal system?
- A. Support and structure
- B. Production of red blood cells
- C. Storage of minerals like calcium
- D. Insulation of the body
Correct Answer: D
Rationale: The skeletal system's primary functions include support and structure, protection of internal organs, movement facilitation, production of blood cells, and storage of minerals like calcium. Insulation of the body is not a function of the skeletal system. Insulation, typically involving fat under the skin, helps regulate body temperature but is not a direct function of the skeletal system. Choice B, the production of red blood cells, is a function of the skeletal system as it occurs in the bone marrow within the bones. Choices A and C are also correct functions of the skeletal system.
What is the breakdown product of ATP (adenosine triphosphate) that provides energy for muscle contraction?
- A. Glucose
- B. Creatine phosphate
- C. ADP (adenosine diphosphate)
- D. Lactic acid
Correct Answer: C
Rationale: ADP (adenosine diphosphate) is the correct breakdown product of ATP that provides energy for muscle contraction. When ATP is hydrolyzed to ADP, energy is released and utilized by the muscles for various cellular processes, including muscle contraction. Glucose serves as an energy source but is not the direct breakdown product of ATP for muscle contraction. Creatine phosphate plays a role in energy storage and transfer, but it is not the immediate breakdown product of ATP. Lactic acid is produced during anaerobic metabolism and is not the direct provider of energy for muscle contraction.