What is the Doppler effect, and how does it explain the shift in frequency of sound waves perceived by an observer?
- A. It affects light waves, not sound waves.
- B. It's the change in wave speed due to medium density.
- C. It's the perceived change in frequency due to relative motion.
- D. It's the bending of waves due to different mediums.
Correct Answer: C
Rationale: The Doppler effect is the perceived change in frequency of a wave due to relative motion between the source of the wave and the observer. This phenomenon is commonly observed with sound waves, where the pitch of a sound appears higher as the source moves towards the observer and lower as the source moves away. Option A is incorrect as the Doppler effect primarily applies to sound waves, not light waves. Option B is incorrect because the Doppler effect is not about the change in wave speed due to medium density but rather a change in perceived frequency. Option D is incorrect as it describes wave bending due to different mediums, which is not the primary concept behind the Doppler effect. Therefore, option C accurately describes the Doppler effect and its application to the shift in frequency of sound waves perceived by an observer.
You may also like to solve these questions
Calcitonin, a hormone that helps regulate calcium levels, is produced by the:
- A. Thyroid gland
- B. Parathyroid gland
- C. Thymus gland
- D. Adrenal gland
Correct Answer: A
Rationale: Calcitonin is a hormone produced by the thyroid gland. It helps regulate calcium levels in the body by inhibiting the breakdown of bone and promoting calcium excretion by the kidneys. The parathyroid gland produces parathyroid hormone (PTH), which works in opposition to calcitonin to regulate calcium levels. The thymus gland is involved in the development of the immune system, and the adrenal gland produces hormones such as cortisol and adrenaline. Therefore, the correct answer is the thyroid gland as it specifically secretes calcitonin for calcium regulation.
The resolution of an optical instrument, like a microscope, refers to its ability to distinguish between:
- A. Different colors of light
- B. The presence or absence of light
- C. Variations in intensity
- D. Very close, nearly identical objects
Correct Answer: D
Rationale: The resolution of an optical instrument, such as a microscope, refers to its ability to distinguish between very close, nearly identical objects. This is crucial in microscopy to clearly visualize and differentiate fine details and structures. Resolving power plays a significant role in determining the quality and effectiveness of an optical instrument. Choices A, B, and C are incorrect because the resolution of an optical instrument does not primarily deal with different colors of light, presence or absence of light, or variations in intensity. Instead, it specifically focuses on the instrument's ability to differentiate between objects that are very close and nearly identical in nature.
At the peak of its trajectory, what force is acting on a ball thrown upwards?
- A. Gravity only
- B. Gravity and air resistance only
- C. Neither gravity nor air resistance
- D. All of the above
Correct Answer: A
Rationale: At the peak of its trajectory, the ball momentarily stops moving upwards before it starts to fall back down. At this point, the only force acting on the ball is gravity, pulling it back towards the ground. Air resistance is negligible at the peak of the trajectory as the ball is momentarily stationary. Therefore, the correct answer is 'Gravity only.' Choices B, C, and D are incorrect. Option B is incorrect because air resistance is minimal when the ball is at its highest point and its velocity is nearly zero. Option C is incorrect as gravity is the only significant force acting on the ball at that instant. Option D is incorrect since air resistance is not a significant factor at the peak of the trajectory.
What is a mutation?
- A. A change in the DNA sequence
- B. A type of protein
- C. A normal part of the DNA replication process
- D. A harmless variation in DNA
Correct Answer: A
Rationale: A mutation is defined as a change in the DNA sequence, which can occur due to various factors such as errors during DNA replication, exposure to mutagens (e.g., chemicals, radiation), or spontaneous changes. These alterations can lead to modifications in the genetic information carried by an organism, resulting in effects that can range from harmless variations to causing genetic disorders or diseases. Mutations play a crucial role in genetic diversity and evolution. Choices B, C, and D are incorrect as they do not accurately define what a mutation is. Option B is incorrect because mutations are not a type of protein but rather changes in DNA. Option C is incorrect because while mutations can occur during DNA replication, they are not considered a 'normal' part of the process as they can lead to genetic variations. Option D is incorrect because mutations can have a wide range of effects and are not always harmless variations.
What energy transformation occurs when a guitar string vibrates to produce sound?
- A. Mechanical energy to thermal energy
- B. Kinetic energy to potential energy
- C. Electrical energy to sound energy
- D. Potential energy to kinetic energy
Correct Answer: D
Rationale: The correct answer is D. When a guitar string vibrates to produce sound, the energy transformation that occurs is from potential energy (stored energy in the string when it is stretched) to kinetic energy (energy of motion as the string vibrates back and forth). As the string vibrates, its kinetic energy is transferred to the surrounding air molecules, producing sound energy. Choices A, B, and C are incorrect. Choice A, mechanical energy to thermal energy, does not align with the energy transformation involved in producing sound from a vibrating guitar string. Choice B, kinetic energy to potential energy, is the opposite of what happens when a guitar string vibrates. Choice C, electrical energy to sound energy, is not relevant to the energy conversion process in this scenario.