What is the process by which a large, unstable nucleus splits into two smaller nuclei, releasing neutrons and energy?
- A. Alpha decay
- B. Beta decay
- C. Gamma decay
- D. Nuclear fission
Correct Answer: D
Rationale: Nuclear fission is the correct answer. It is the process in which a large, unstable nucleus splits into two smaller nuclei, releasing neutrons and energy. Alpha decay, beta decay, and gamma decay involve the emission of alpha particles, beta particles, and gamma rays, respectively. These decay processes do not result in the splitting of a nucleus like nuclear fission does.
You may also like to solve these questions
Which of the following is NOT a recognized mode of natural selection?
- A. Directional selection (favoring one extreme trait value on a spectrum)
- B. Disruptive selection (favoring both extreme trait values on a spectrum)
- C. Stabilizing selection (favoring the average trait value on a spectrum)
- D. Sexual selection (selection based on mate choice that influences reproductive success)
Correct Answer: D
Rationale: A) Directional selection is a recognized mode of natural selection where one extreme trait value on a spectrum is favored over others, leading to a shift in the average trait value over time. B) Disruptive selection is a recognized mode of natural selection where both extreme trait values on a spectrum are favored over the average trait value, potentially causing the population to split into distinct groups. C) Stabilizing selection is a recognized mode of natural selection favoring the average trait value on a spectrum over extreme values, resulting in reduced genetic diversity. D) Sexual selection differs from traditional natural selection modes as it involves mate choice and competition for mates, not direct selection pressure on traits affecting survival and reproduction in the environment. Sexual selection can drive the evolution of traits enhancing an individual's attractiveness for mating purposes.
What is the energy required to break a chemical bond called?
- A. Kinetic energy
- B. Potential energy
- C. Activation energy
- D. Bond energy
Correct Answer: C
Rationale: Activation energy is the energy required to break a chemical bond and initiate a chemical reaction. It is the minimum amount of energy needed to start a chemical reaction by breaking bonds in the reactant molecules. Kinetic energy (option A) is the energy of motion and is not directly related to breaking chemical bonds. Potential energy (option B) is stored energy that can be converted into other forms of energy but is not specifically about breaking chemical bonds. Bond energy (option D) refers to the energy required to break a particular chemical bond in a molecule and is not the general term for the energy needed to break any chemical bond. Activation energy is crucial in determining the rate of a chemical reaction as it affects the probability of reactant molecules colliding with sufficient energy to surpass the energy barrier and form products.
Which hormone, produced by the pancreas, regulates blood sugar levels by promoting the uptake of glucose into cells?
- A. Insulin
- B. Glucagon
- C. Cortisol
- D. Thyroxine
Correct Answer: A
Rationale: Insulin is the correct answer. It is produced by the pancreas and plays a crucial role in regulating blood sugar levels by facilitating the absorption of glucose into cells. When blood sugar levels are elevated, insulin is released to help cells utilize glucose for energy or store it for future use. Glucagon, choice B, is produced by the pancreas as well but has the opposite effect of raising blood sugar levels by releasing stored glucose into the bloodstream. Cortisol, choice C, is a hormone produced by the adrenal glands that is involved in the stress response and metabolism, not specifically in regulating blood sugar levels. Thyroxine, choice D, is a hormone produced by the thyroid gland that regulates metabolism but is not directly involved in the uptake of glucose into cells.
Which statement accurately describes cytokinesis in animal cells?
- A. Which statement accurately describes cytokinesis in animal cells?
- B. A cell plate forms in the center of the dividing cell, eventually separating the cytoplasm into two daughter cells.
- C. A cell plate forms in the center of the dividing cell, eventually separating the cytoplasm into two daughter cells.
- D. The nucleus elongates and pulls apart, physically dividing the cytoplasm into two.
Correct Answer: B
Rationale: A) This statement is a duplicate of option C and does not accurately describe cytokinesis in animal cells.
B) In animal cells, during cytokinesis, a cleavage furrow forms in the center of the dividing cell. This furrow deepens and eventually pinches the cytoplasm into two daughter cells. This process is distinct from plant cells, where a cell plate forms.
C) This statement is a duplicate of option A and does not accurately describe cytokinesis in animal cells.
D) This statement describes the process of nuclear division (mitosis) rather than cytokinesis, which is the division of the cytoplasm.
What is the difference between a phylum and a class?
- A. Phylums are broader and more general
- B. Classes are broader and more general
- C. They are synonyms, used for the same groups
- D. Phylums are for plants, classes are for animals
Correct Answer: A
Rationale: In biological classification, a phylum is a higher taxonomic rank than a class. A phylum is a broader category that encompasses multiple classes within it. It represents a group of organisms sharing a common body plan or evolutionary history. On the other hand, a class is a more specific category within a phylum that includes organisms with similar characteristics. Therefore, phyla are broader and more general compared to classes. Choice B is incorrect because classes are more specific categories within phyla. Choice C is incorrect as phyla and classes are distinct hierarchical levels in taxonomy. Choice D is incorrect because phyla and classes are not restricted to specific types of organisms; they can apply to various organisms across the biological kingdom.