What is the scientific term for the involuntary rhythmic contraction and relaxation of the heart muscle?
- A. Peristalsis
- B. Myogenesis
- C. Myocardial contractility
- D. Systole and diastole
Correct Answer: D
Rationale: The correct answer is D: Systole and diastole. Systole and diastole are the two phases of the cardiac cycle where the heart muscle contracts (systole) and relaxes (diastole) rhythmically to pump blood throughout the body. This rhythmic process ensures proper blood circulation by pumping blood to the lungs and the rest of the body. Peristalsis, on the other hand, refers to the involuntary constriction and relaxation of the muscles in the gastrointestinal tract, aiding in the movement of food and waste. Myogenesis is the process of muscle tissue formation, and myocardial contractility pertains to the heart muscle's ability to contract efficiently.
You may also like to solve these questions
Why do Neon (Ne) and Helium (He) belong to Group 18 (Noble Gases)?
- A. Electromagnetism
- B. Gravity
- C. Strong nuclear force
- D. Weak nuclear force
Correct Answer: A
Rationale: Neon (Ne) and Helium (He) belong to Group 18 (Noble Gases) because they have complete and stable outer electron shells. The stability of these outer electron shells is due to the balance of attractive forces between the positively charged protons in the nucleus and the negatively charged electrons in the outer shell. This balance is maintained by the electromagnetic force, which is responsible for holding atoms together and determining their chemical properties. Gravity (Choice B) is a force of attraction between objects with mass and is not responsible for the stability of electron shells. The strong nuclear force (Choice C) and weak nuclear force (Choice D) are forces that act within the nucleus of an atom and are not directly related to the stability of outer electron shells in determining an element's group in the periodic table.
As a water wave approaches a shallow beach, what happens to its speed, wavelength, and frequency?
- A. Speed increases, wavelength decreases, frequency increases.
- B. Speed decreases, wavelength decreases, frequency remains the same.
- C. Speed increases, wavelength increases, frequency decreases.
- D. Speed, wavelength, and frequency remain the same.
Correct Answer: B
Rationale: As a water wave approaches a shallow beach, the speed of the wave decreases due to the change in medium from deep to shallow water. According to the wave equation (speed = frequency x wavelength), if the speed decreases and the frequency remains the same, the wavelength must also decrease to maintain the equation balanced. This phenomenon occurs due to the wavefronts being slowed down by the shallower water, causing the wavelength to decrease while the frequency remains constant. Choice A is incorrect as the speed of the wave decreases in shallow water. Choice C is incorrect because the speed increases in deep water, not in shallow water. Choice D is incorrect as all the wave characteristics change when moving from deep to shallow water.
What is the main difference between white and brown adipose tissue?
- A. Location only
- B. Function and energy metabolism
- C. Color only
- D. Both white and brown have the same function
Correct Answer: B
Rationale: The main difference between white and brown adipose tissue lies in their function and energy metabolism. White adipose tissue is primarily involved in energy storage, while brown adipose tissue is specialized for energy expenditure and thermogenesis. This functional disparity is the key dissimilarity between white and brown adipose tissue, rather than just their location or color. Choice A is incorrect because the difference is not only in location but also in function. Choice C is incorrect as color is not the defining factor in their distinction. Choice D is incorrect as white and brown adipose tissues serve different functions in the body.
What property of matter explains why ice floats on water?
- A. Viscosity
- B. Density
- C. Buoyancy
- D. Surface tension
Correct Answer: C
Rationale: The correct answer is C, buoyancy. Ice floats on water due to buoyancy, a property of matter. When water freezes into ice, it becomes less dense than liquid water, causing it to float. This phenomenon occurs because the molecules in ice are more spread out compared to liquid water, resulting in ice being less dense and able to float on the surface.
Choice A, viscosity, is incorrect because viscosity refers to a fluid's resistance to flow, not its ability to float.
Choice B, density, is incorrect because while ice being less dense than water is the reason it floats, this choice does not explain the specific property that causes this phenomenon.
Choice D, surface tension, is incorrect as it pertains to the cohesive forces between molecules at the surface of a liquid, not the reason why ice floats on water.
What is the scientific term for a broken bone?
- A. Osteoporosis
- B. Fracture
- C. Sprain
- D. Dislocation
Correct Answer: B
Rationale: The scientific term for a broken bone is a fracture. Osteoporosis is a condition characterized by weak and brittle bones, not a broken bone. A sprain involves an injury to a ligament, not a bone. Dislocation occurs when the ends of bones are forced out of their normal positions at a joint, which is different from a fracture.