What is the spontaneous, random movement of small particles suspended in a liquid, caused by the unbalanced impacts of molecules on the particle?
- A. Brownian motion
- B. Grey's kinesis
- C. Boyle's wave
- D. None of the above
Correct Answer: A
Rationale: Brownian motion is the correct choice as it specifically refers to the spontaneous, random movement of small particles suspended in a liquid, caused by the unbalanced impacts of molecules on the particle. This phenomenon was observed and documented by Robert Brown, leading to the discovery of the existence of molecules. Grey's kinesis and Boyle's wave are not scientifically recognized terms related to this concept.
You may also like to solve these questions
What are mixtures of 2 or more metals called?
- A. Solutions
- B. Alloys
- C. Compounds
- D. Suspensions
Correct Answer: B
Rationale: Alloys are mixtures of two or more metals, combining their properties to create materials with enhanced characteristics. Examples of alloys include bronze (copper and tin) and steel (iron and carbon). Alloys are commonly used in various industries due to their improved strength, durability, and other desirable qualities. Solutions (Choice A) refer to a homogeneous mixture of two or more substances, where one substance is dissolved in another. Compounds (Choice C) are substances composed of two or more elements chemically combined in fixed proportions. Suspensions (Choice D) are heterogeneous mixtures where particles are dispersed but can settle out over time.
Which, if any, of the following statements is false?
- A. In an endothermic process, solubility typically decreases with an increase in temperature and increases if the temperature decreases
- B. In an exothermic process, solubility decreases with an increase in temperature
- C. All of the Above
- D. None of the Above
Correct Answer: A
Rationale: Statement A is false. In an endothermic process, solubility typically decreases with an increase in temperature and increases if the temperature decreases. When heat is added to an endothermic process, it disrupts the intermolecular forces holding the solute particles together, making them more likely to dissolve. Therefore, higher temperatures generally lead to increased solubility in an endothermic process. Statement B is correct as in an exothermic process, solubility usually decreases with an increase in temperature due to the excess heat causing solute particles to come out of solution. As Statements A and B are contradictory, the answer cannot be 'All of the Above' or 'None of the Above.'
What is the oxidation state of the sulfur atom in sulfuric acid H2SO4?
- A. 4
- B. 6
- C. 8
- D. 10
Correct Answer: B
Rationale: In sulfuric acid (H2SO4), sulfur has an oxidation state of +6. The oxidation state is determined by considering the overall charge of the compound and the known oxidation states of other elements. In this case, hydrogen is typically +1, and oxygen is -2. To balance the charges and match the compound's overall charge of 0, sulfur must have an oxidation state of +6. Choice A (4) is incorrect because it doesn't balance the charges in the compound. Choices C (8) and D (10) are also incorrect as they are not valid oxidation states for sulfur in this compound.
Which, if any, of these statements about solubility is correct?
- A. The solubility of a substance is defined as its concentration in a saturated solution
- B. Substances with solubilities much less than 1 g/100 mL of solvent are generally considered insoluble
- C. A saturated solution is one that cannot dissolve any more solute
- D. All of these statements are correct
Correct Answer: D
Rationale: A. The solubility of a substance is indeed defined as the concentration of a solute that can be dissolved in a solvent to form a saturated solution at a specific temperature and pressure. B. Substances with solubilities much less than 1 g/100 mL of solvent are generally considered insoluble because they do not dissolve in significant amounts in the solvent. C. A saturated solution is one that cannot dissolve any more solute as it has reached its maximum capacity at a specific temperature and pressure. Therefore, all the statements provided are correct, making option D the correct answer.
Different isotopes of a particular element contain the same number of
- A. Protons
- B. Neutrons
- C. Protons and neutrons
- D. Protons, neutrons, and electrons
Correct Answer: A
Rationale: Different isotopes of a particular element contain the same number of protons. Isotopes are defined by the number of neutrons they have, which can vary while the number of protons remains the same. This is because the number of protons in an atom determines its elemental identity. Choice B - Neutrons is incorrect because isotopes can have different numbers of neutrons. Choice C - Protons and neutrons is incorrect because the number of neutrons can vary in isotopes. Choice D - Protons, neutrons, and electrons is incorrect because electrons are not fixed and can vary in an atom, but the number of protons is what defines the element.
Nokea