What is the stage of mitosis during which the nuclear envelope reforms?
- A. Prophase
- B. Metaphase
- C. Telophase
- D. Cytokinesis
Correct Answer: C
Rationale: During telophase, the nuclear envelope reforms around the separated sister chromatids at opposite poles of the cell. This stage marks the reversal of the processes that occurred during prophase, where the nuclear envelope breaks down. Metaphase is characterized by the alignment of chromosomes along the metaphase plate in the cell's center. Cytokinesis is the final step of cell division involving cytoplasmic division to form two daughter cells, but it does not involve the reformation of the nuclear envelope. Therefore, choice C (Telophase) is the correct answer as it specifically involves the reformation of the nuclear envelope, distinguishing it from the other stages of mitosis.
You may also like to solve these questions
Which hormone, produced by the adrenal glands, prepares the body for a 'fight or flight' response by increasing heart rate, dilating airways, and mobilizing energy stores?
- A. Cortisol
- B. Aldosterone
- C. Epinephrine
- D. Insulin
Correct Answer: C
Rationale: Epinephrine, also known as adrenaline, is the hormone produced by the adrenal glands that prepares the body for a 'fight or flight' response. It increases heart rate, dilates airways, and mobilizes energy stores to provide the body with the necessary resources to respond to a perceived threat or stressor. Cortisol, although produced by the adrenal glands, is not responsible for the 'fight or flight' response; it is involved in regulating metabolism, immune response, and stress. Aldosterone, another hormone produced by the adrenal glands, primarily regulates electrolyte and fluid balance. Insulin, produced by the pancreas, is responsible for regulating blood sugar levels and is not directly involved in the 'fight or flight' response.
What is the significance of a healthy gut microbiome?
- A. Production of digestive enzymes
- B. Boosting the immune system and nutrient synthesis
- C. Breakdown of complex carbohydrates
- D. Regulation of appetite
Correct Answer: B
Rationale: A healthy gut microbiome plays a crucial role in boosting the immune system by defending against harmful pathogens, synthesizing essential nutrients like vitamins, aiding in the digestion of certain foods, and maintaining overall gut health. While the gut microbiome does contribute to the breakdown of complex carbohydrates and regulation of appetite, its significance extends beyond these functions to include immune support and nutrient synthesis. Choice A, production of digestive enzymes, is not the primary significance of a healthy gut microbiome. Choice C is a function related to the gut microbiome but is not the sole significance. Choice D, regulation of appetite, is important but not as central as the immune system support and nutrient synthesis provided by a healthy gut microbiome.
What is the primary difference between ionic and metallic bonding?
- A. Ionic bonds involve electron transfer, while metallic bonds involve electron sharing.
- B. Ionic bonds are weak and directional, while metallic bonds are strong and non-directional.
- C. Ionic bonds exist between metals and non-metals, while metallic bonds exist only between metals.
- D. Ionic bonds form discrete molecules, while metallic bonds form extended structures.
Correct Answer: B
Rationale: Ionic bonds involve electron transfer, where one atom completely donates an electron to another, resulting in discrete molecules. On the other hand, metallic bonds are non-directional and strong, formed by a 'sea' of delocalized electrons shared among all metal atoms. This shared electron cloud allows for strong bonding throughout the entire material, making metallic bonds non-directional and strong compared to the directional and weaker nature of ionic bonds. Choice A is incorrect because metallic bonds do not involve electron sharing but rather the sharing of a sea of delocalized electrons. Choice C is incorrect as metallic bonds can also exist between metal atoms, not just between metals and non-metals. Choice D is incorrect because metallic bonds do not form discrete molecules but rather extended structures due to the sharing of electrons among all metal atoms.
What is the difference between alpha decay and beta decay?
- A. Both release the same type of particle.
- B. Alpha decay releases a helium nucleus, while beta decay releases an electron or positron.
- C. Alpha decay is more common than beta decay.
- D. They both convert one element into another, but in different ways.
Correct Answer: B
Rationale: The correct answer is B. Alpha decay involves the release of a helium nucleus, which consists of two protons and two neutrons. In contrast, beta decay releases an electron (beta-minus decay) or a positron (beta-plus decay). This significant distinction in the particles emitted during the decay processes distinguishes alpha decay from beta decay. Choice A is incorrect because alpha and beta decay release different types of particles. Choice C is incorrect as beta decay is more common than alpha decay in many cases. Choice D is incorrect as it does not specifically address the particles released during alpha and beta decay.
What is the name of the bone marrow cavity in the long bones where red blood cells are produced?
- A. Periosteum
- B. Diaphysis
- C. Medullary cavity
- D. Epiphysis
Correct Answer: C
Rationale: The medullary cavity is the correct answer. It is the central cavity within the shafts of long bones where red bone marrow is located, responsible for the production of red blood cells. The periosteum is the outer layer of bone that provides nourishment and participates in bone repair. The diaphysis refers to the shaft of a long bone that contains yellow bone marrow. The epiphysis is the end of a long bone involved in joint articulation and contains red bone marrow in children for blood cell production.