What is the term used when an atom gains one or more electrons?
- A. Cation
- B. Anion
- C. Isotope
- D. Electron
Correct Answer: B
Rationale: When an atom gains electrons, it becomes negatively charged and is called an anion. An anion is formed when an atom gains one or more electrons, leading to an excess of negative charge.
Choice A, 'Cation,' is incorrect because a cation is formed when an atom loses electrons, resulting in a positively charged ion. Choice C, 'Isotope,' refers to atoms of the same element with different numbers of neutrons and is not related to gaining electrons. Choice D, 'Electron,' is the particle that an atom gains to become an anion, not the term for the atom itself after gaining electrons.
You may also like to solve these questions
To the nearest whole number, what is the mass of one mole of water?
- A. 16 g/mol
- B. 18 g/mol
- C. 20 g/mol
- D. 22 g/mol
Correct Answer: B
Rationale: The molar mass of water (Hâ‚‚O) is calculated by adding the atomic masses of two hydrogen atoms (each with a molar mass of approximately 1 g/mol) and one oxygen atom (with a molar mass of approximately 16 g/mol). Therefore, the molar mass of water is approximately 18 g/mol, making choice B the correct answer. Choice A (16 g/mol) is incorrect because it represents the molar mass of oxygen, not water. Choices C (20 g/mol) and D (22 g/mol) are incorrect as they do not correspond to the molar mass of water.
Which of the following factors would not affect rates of reaction?
- A. Temperature
- B. Surface area
- C. Pressure
- D. Time
Correct Answer: D
Rationale: Time would not directly affect rates of reaction. The rate of a chemical reaction is determined by factors that affect the frequency of successful collisions between reactant molecules, leading to a reaction. Temperature, surface area, and pressure can influence reaction rates by impacting the kinetic energy of molecules, the exposed surface for collisions, and the concentration of reactants, respectively. However, time, in the context of this question, does not alter the rate of reaction but may affect the extent of the reaction or the amount of product formed over time.
What is the normal body temperature in Fahrenheit?
- A. 96°F
- B. 98.6°F
- C. 100°F
- D. 95°F
Correct Answer: B
Rationale: The normal body temperature for humans is 98.6°F, which is equivalent to 37°C. This temperature is considered the average baseline for most individuals when measured orally. Choice A (96°F) is too low for normal body temperature. Choice C (100°F) is too high for normal body temperature. Choice D (95°F) is also lower than the normal body temperature range. Therefore, the correct answer is B, 98.6°F.
Carbon-12 and carbon-14 are isotopes. What do they have in common?
- A. Number of nuclear particles
- B. Number of protons
- C. Number of neutrons
- D. Mass number
Correct Answer: C
Rationale: Isotopes are atoms of the same element with the same number of protons (which determines the element) but different numbers of neutrons. Both carbon-12 and carbon-14 have 6 protons (hence they are both carbon atoms) but different numbers of neutrons: carbon-12 has 6 neutrons, while carbon-14 has 8 neutrons. Therefore, the correct answer is the number of neutrons. Choices A, B, and D are incorrect because isotopes may have different numbers of nuclear particles (protons + neutrons), protons, and mass numbers, respectively.
What is the correct electron configuration for lithium?
- A. 1s²2s¹
- B. 1s²2s²
- C. 1s²2s¹2p¹
- D. 1s¹2s¹2p²
Correct Answer: A
Rationale: The electron configuration for lithium is 1s²2s¹. Lithium has 3 electrons, and the configuration indicates that the first two electrons fill the 1s orbital, while the third electron fills the 2s orbital. Therefore, the correct electron configuration for lithium is 1s²2s¹. Choice B (1s²2s²) is incorrect as it represents the electron configuration for beryllium, not lithium. Choice C (1s²2s¹2p¹) includes the 2p orbital, which is not involved in lithium's electron configuration. Choice D (1s¹2s¹2p²) is incorrect as it does not accurately represent lithium's electron configuration.