What type of bond forms between elements when they share electrons?
- A. Covalent bond
- B. Ionic bond
- C. Metallic bond
- D. Hydrogen bond
Correct Answer: A
Rationale: The correct answer is A: Covalent bond. In a covalent bond, atoms share electrons, leading to the creation of a strong attraction that holds them together. This type of bond is characterized by the sharing of electron pairs between atoms, resulting in the formation of molecules. Choice B, Ionic bond, involves the transfer of electrons from one atom to another, creating charged ions that attract each other. Choice C, Metallic bond, refers to the sharing of electrons among a sea of delocalized electrons in a metal structure. Choice D, Hydrogen bond, is a weak electrostatic attraction between a hydrogen atom and an electronegative atom like oxygen or nitrogen, not involving the sharing of electrons.
You may also like to solve these questions
Melatonin is a hormone produced by the pineal gland. What is its primary function?
- A. Regulate blood pressure
- B. Stimulate the digestive system
- C. Control sleep-wake cycles
- D. Maintain bone density
Correct Answer: C
Rationale: Melatonin is primarily known for its role in controlling sleep-wake cycles. It is produced by the pineal gland in response to darkness, helping signal the body that it is time to sleep. Melatonin levels typically rise in the evening and stay elevated throughout the night, promoting sleep. Choices A, B, and D are incorrect as melatonin's primary function is not to regulate blood pressure, stimulate the digestive system, or maintain bone density. While melatonin may have some indirect effects on these functions, its main role lies in regulating the circadian rhythm and promoting a restful sleep cycle.
Which of the following nucleic acids carries amino acids to organelles called ribosomes, where the amino acids are linked one by one to produce a polypeptide?
- A. DNA
- B. mRNA
- C. rRNA
- D. tRNA
Correct Answer: D
Rationale: tRNA is the correct answer as it carries amino acids to the ribosomes during protein synthesis. Transfer RNA (tRNA) plays a crucial role in protein synthesis by bringing specific amino acids to the ribosome according to the mRNA sequence. Once at the ribosome, the amino acids are linked together to form a polypeptide chain. This process is essential for the creation of proteins in the cell, highlighting the significance of tRNA in the translation process. Choice A, DNA, is incorrect as DNA does not directly participate in protein synthesis. Choice B, mRNA, is incorrect as mRNA carries the genetic information from DNA to the ribosome but does not directly carry amino acids. Choice C, rRNA, is incorrect as ribosomal RNA is a component of the ribosome structure and is involved in protein synthesis but does not carry amino acids like tRNA.
In a single displacement reaction, one element takes the place of another element in a compound. Which of the following is an example?
- A. 2H2 + O2 -> 2H2O
- B. Zn + 2HCl -> ZnCl2 + H2
- C. CaCO3 -> CaO + CO2
- D. CH4 + 2O2 -> CO2 + 2H2O
Correct Answer: B
Rationale: Option B demonstrates a single displacement reaction where zinc (Zn) displaces hydrogen (H) in hydrochloric acid (HCl) to produce zinc chloride (ZnCl2) and hydrogen gas (H2). This reaction exemplifies the concept of one element (Zn) replacing another element (H) in a compound (HCl), which is characteristic of single displacement reactions. Choices A, C, and D do not involve a single element displacing another in a compound, making them incorrect. In choice A, hydrogen and oxygen combine to form water, which is not a single displacement reaction. In choice C, calcium carbonate decomposes into calcium oxide and carbon dioxide, not involving displacement of elements. In choice D, methane reacts with oxygen to form carbon dioxide and water, which is a combustion reaction, not a single displacement reaction.
What is the difference between active and passive immunity?
- A. Active immunity is short-lived, while passive immunity is long-lasting.
- B. Active immunity involves the body's own immune response, while passive immunity provides immediate protection through antibodies from another source.
- C. Active immunity only protects against bacterial infections, while passive immunity works against both bacteria and viruses.
- D. Passive immunity requires repeated vaccinations, while active immunity is a one-time process.
Correct Answer: B
Rationale: Active immunity involves the body's own immune response, where the individual's immune system produces antibodies in response to exposure to a pathogen or vaccine. This type of immunity is long-lasting because the immune system 'remembers' the pathogen and can mount a rapid response upon re-exposure. In contrast, passive immunity provides immediate protection through the transfer of pre-formed antibodies from another source, such as through maternal antibodies crossing the placenta or receiving antibodies through an injection. Passive immunity is short-lived because the transferred antibodies eventually degrade and are not produced by the recipient's immune system. Choice A is incorrect because active immunity is generally long-lasting, as it involves the production of antibodies by the individual's immune system. Choice C is incorrect as both active and passive immunity can work against various pathogens, not limited to bacteria or viruses. Choice D is incorrect as passive immunity does not require repeated vaccinations but provides temporary protection through the transfer of antibodies from an external source.
What is the main factor affecting the acceleration of a ball rolling down an inclined plane?
- A. The material of the ball
- B. The angle of the incline
- C. The air resistance
- D. The ball's initial velocity
Correct Answer: B
Rationale: The main factor affecting the acceleration of a ball rolling down an inclined plane is the angle of the incline. The steeper the incline, the greater the component of the gravitational force acting parallel to the incline, leading to a higher acceleration of the ball. While the material of the ball, air resistance, and the ball's initial velocity may have some influence on the motion, the angle of the incline is the primary factor determining acceleration in this scenario. The material of the ball does not significantly affect its acceleration on the incline unless it impacts the friction with the surface. Air resistance plays a minor role in the acceleration of the ball compared to the gravitational force. The ball's initial velocity affects the speed at the start but does not influence the acceleration down the incline.
Nokea