What type of epithelium lines the inner surface of blood vessels?
- A. Simple squamous epithelium
- B. Simple columnar epithelium
- C. Stratified squamous epithelium
- D. Stratified columnar epithelium
Correct Answer: A
Rationale: The correct answer is simple squamous epithelium (Choice A). The inner surface of blood vessels is lined by a single layer of flattened cells, known as simple squamous epithelium. This epithelium type is thin and allows for efficient diffusion and filtration, which is essential for the exchange of gases and nutrients across blood vessel walls. Simple columnar epithelium (Choice B) is typically found in the lining of the gastrointestinal tract and is responsible for absorption and secretion. Stratified squamous epithelium (Choice C) is commonly found in the skin, providing protection against mechanical stress. Stratified columnar epithelium (Choice D) is not a characteristic epithelium type found in the lining of blood vessels, as it is more commonly present in specific regions of the body like parts of the male urethra and the conjunctiva of the eye.
You may also like to solve these questions
Why are elements in Group 18 (Noble gases) generally unreactive?
- A. They have high atomic masses
- B. They lack valence electrons
- C. Their outermost electron shells are completely filled
- D. They exist as single atoms, not molecules
Correct Answer: C
Rationale: Elements in Group 18 (Noble gases) are generally unreactive because their outermost electron shells are completely filled. This results in high stability and low reactivity since they have achieved a full valence shell configuration, making them less likely to gain, lose, or share electrons with other atoms. The full valence shell configuration leads to a minimal tendency for these elements to form chemical bonds, hence exhibiting low reactivity. Choices A, B, and D are incorrect because high atomic masses, lack of valence electrons, and existing as single atoms do not directly contribute to the unreactivity of noble gases. It is the full valence shell configuration that is the primary reason for their inert nature.
What happens to the concentration of hydrogen ions (\([H^+]\)) in a solution as the pH increases?
- A. Increases
- B. Decreases
- C. Remains constant
- D. Becomes neutral
Correct Answer: B
Rationale: As the pH increases, the concentration of hydrogen ions decreases. The relationship is inversely proportional
What is the main function of the endoplasmic reticulum (ER) in the cell?
- A. To synthesize and transport proteins and lipids
- B. To package and transport proteins
- C. To break down macromolecules
- D. To store genetic material
Correct Answer: A
Rationale: The endoplasmic reticulum (ER) is a network of membranes within the cell that plays a crucial role in protein and lipid synthesis. It consists of two types: rough ER, which is studded with ribosomes and involved in protein synthesis, and smooth ER, which is involved in lipid synthesis and detoxification. The ER's main function is to synthesize proteins and lipids, not just package and transport them. While the ER is involved in transporting these synthesized proteins and lipids to other parts of the cell or outside the cell, its primary role is in their synthesis. Breaking down macromolecules is primarily the function of lysosomes, which are membrane-bound organelles containing enzymes for digestion. Storing genetic material is the function of the nucleus, which houses the cell's DNA. The ER is not involved in storing genetic material.
What happens to the potential energy of an object as it falls freely near the Earth's surface?
- A. Potential energy decreases
- B. Potential energy increases
- C. Potential energy remains constant
- D. Potential energy becomes zero
Correct Answer: A
Rationale: As an object falls freely near the Earth's surface, its potential energy decreases. This decrease occurs because the gravitational potential energy is being converted into kinetic energy as the object accelerates due to gravity. According to the law of conservation of energy, the total mechanical energy (the sum of potential and kinetic energy) remains constant in the absence of non-conservative forces like air resistance. Choice B ('Potential energy increases') is incorrect because the object's potential energy is being converted into kinetic energy, leading to a decrease. Choice C ('Potential energy remains constant') is incorrect as the conversion of potential energy to kinetic energy results in a decrease in potential energy. Choice D ('Potential energy becomes zero') is incorrect because potential energy is not reduced to zero but is transformed into kinetic energy as the object falls.
What is the primary factor that determines whether a solute will dissolve in a solvent?
- A. Temperature
- B. Pressure
- C. Molecular structure
- D. Particle size
Correct Answer: C
Rationale: The primary factor that determines whether a solute will dissolve in a solvent is the molecular structure. The compatibility of the solute's molecules with the solvent's molecules is crucial for dissolution to occur. While temperature, pressure, and particle size can influence the rate of dissolution, they are not the primary factors determining solubility. Molecular structure plays a key role in determining if a solute will form favorable interactions with the solvent, which is essential for dissolution to take place effectively. Temperature can affect solubility by changing the kinetic energy of molecules, pressure typically has a minor effect on solubility except for gases, and particle size influences the rate of dissolution by increasing surface area, but none of these factors are as fundamentally important as molecular structure in determining solubility.