What type of epithelium lines the inner surface of blood vessels?
- A. Simple squamous epithelium
- B. Simple columnar epithelium
- C. Stratified squamous epithelium
- D. Stratified columnar epithelium
Correct Answer: A
Rationale: The correct answer is simple squamous epithelium (Choice A). The inner surface of blood vessels is lined by a single layer of flattened cells, known as simple squamous epithelium. This epithelium type is thin and allows for efficient diffusion and filtration, which is essential for the exchange of gases and nutrients across blood vessel walls. Simple columnar epithelium (Choice B) is typically found in the lining of the gastrointestinal tract and is responsible for absorption and secretion. Stratified squamous epithelium (Choice C) is commonly found in the skin, providing protection against mechanical stress. Stratified columnar epithelium (Choice D) is not a characteristic epithelium type found in the lining of blood vessels, as it is more commonly present in specific regions of the body like parts of the male urethra and the conjunctiva of the eye.
You may also like to solve these questions
Which vitamin requires intrinsic factor for proper absorption?
- A. Vitamin A
- B. Vitamin C
- C. Vitamin D
- D. Vitamin B12
Correct Answer: D
Rationale: Vitamin B12 requires intrinsic factor, a glycoprotein secreted by the parietal cells of the stomach, for proper absorption in the small intestine. Intrinsic factor binds to vitamin B12 and facilitates its absorption in the ileum. Deficiency in intrinsic factor can lead to pernicious anemia, a condition characterized by a lack of vitamin B12 absorption. Options A, B, and C are incorrect. Vitamin A is absorbed in the small intestine with the help of bile salts; Vitamin C is absorbed in the small intestine via active transport; Vitamin D is absorbed in the small intestine through a process involving bile salts and micelles. It is essential for students to understand this relationship as it highlights the importance of intrinsic factor in the absorption of specific vitamins and the consequences of its deficiency.
What is the main target organ for insulin, the hormone produced by the pancreas?
- A. Liver
- B. Kidneys
- C. Muscles
- D. Brain
Correct Answer: C
Rationale: The main target organ for insulin is muscles. Insulin plays a crucial role in regulating glucose metabolism by promoting the uptake of glucose into muscle cells. This glucose can then be utilized for energy production or stored for later use. Therefore, muscles are the primary site where insulin exerts its effects on glucose uptake and utilization. The liver primarily responds to insulin by regulating glucose storage and release, but the main target for insulin-mediated glucose uptake is muscles. Kidneys are not a target organ for insulin action in glucose metabolism. The brain does not heavily rely on insulin for glucose uptake as it primarily uses glucose independently of insulin for energy production.
Adaptive radiation refers to the evolutionary process where:
- A. A single ancestral species diversifies into multiple descendant species due to ecological pressures in a heterogeneous environment.
- B. Two unrelated species evolve similar adaptations in response to similar environments, leading to convergent evolution.
- C. A population becomes increasingly well-adapted to its current environment through continued natural selection.
- D. The fossil record exhibits gaps or missing links in the evolutionary history of a lineage.
Correct Answer: A
Rationale: - Adaptive radiation is a process where a single ancestral species diversifies into multiple descendant species to exploit different ecological niches within a heterogeneous environment.
- This diversification occurs due to the different selective pressures present in various habitats, leading to the evolution of distinct traits and adaptations in different descendant species.
- Option A accurately describes the process of adaptive radiation, where the initial species undergoes rapid speciation to occupy different ecological roles and adapt to diverse environmental conditions.
- Options B, C, and D do not accurately describe adaptive radiation but refer to other evolutionary processes such as convergent evolution, natural selection, and gaps in the fossil record, respectively.
Which type of immune cell does the human immunodeficiency virus (HIV) target and destroy?
- A. Neutrophils
- B. Macrophages
- C. Helper T cells
- D. Memory B cells
Correct Answer: C
Rationale: HIV targets and destroys Helper T cells, which are vital for coordinating the immune response against infections. The destruction of Helper T cells weakens the immune system, leading to acquired immunodeficiency syndrome (AIDS). Neutrophils (Choice A) are primarily involved in acute inflammatory responses and fighting bacterial infections. Macrophages (Choice B) play a role in phagocytosis and antigen presentation but are not the primary target of HIV. Memory B cells (Choice D) are responsible for mounting a quicker and more robust antibody response upon re-exposure to a pathogen, but they are not the main target of HIV infection.
Which blood vessels carry oxygenated blood from the heart to the rest of the body?
- A. Pulmonary arteries
- B. Pulmonary veins
- C. Systemic arteries
- D. Systemic veins
Correct Answer: C
Rationale: The correct answer is systemic arteries. Systemic arteries carry oxygenated blood from the heart to the rest of the body to provide oxygen and nutrients to tissues. Pulmonary arteries carry deoxygenated blood from the heart to the lungs for oxygenation. Pulmonary veins transport oxygenated blood from the lungs back to the heart. Systemic veins return deoxygenated blood from the body tissues to the heart for reoxygenation. Therefore, choices A, B, and D are incorrect as they do not carry oxygenated blood away from the heart to the body.
Nokea