What type of intermolecular force is a dipole attraction?
- A. Strong
- B. Weak
- C. Medium
- D. Very strong
Correct Answer: B
Rationale: A dipole attraction is considered a weak intermolecular force. It occurs between molecules with permanent dipoles, where the positive end of one molecule is attracted to the negative end of another molecule. While dipole-dipole interactions are stronger than dispersion forces, they are weaker than hydrogen bonding or ion-dipole interactions. Therefore, the correct answer is 'Weak.' Choices A, C, and D are incorrect because dipole attractions are not classified as strong, medium, or very strong intermolecular forces, but rather fall into the category of weak intermolecular forces.
You may also like to solve these questions
If electrons are not shared equally in a covalent bond, the bond is what?
- A. Polar
- B. Non-polar
- C. Ionic
- D. Hydrogen
Correct Answer: A
Rationale: A polar covalent bond occurs when electrons are shared unequally between atoms. In this type of bond, one atom has a stronger pull on the shared electrons, leading to a partial positive and partial negative charge distribution within the molecule. Choice B, non-polar, is incorrect because in non-polar covalent bonds, electrons are shared equally between atoms. Choice C, ionic, is incorrect as ionic bonds involve a transfer of electrons rather than sharing. Choice D, hydrogen, is incorrect as it does not describe the nature of a covalent bond.
What charge do Group VA elements typically have?
- A. -1
- B. -2
- C. -3
Correct Answer: C
Rationale: Group VA elements, also known as Group 15 elements, typically have a charge of -3. This is because they have five valence electrons and tend to gain three electrons to achieve a stable octet configuration, resulting in a -3 charge. Choice A (-1) and Choice B (-2) are incorrect because Group VA elements need to gain three electrons to reach a stable electron configuration, not just one or two. Choice D (0) is also incorrect because Group VA elements do not lose electrons to form a charge of 0.
If electrons are shared equally in a covalent bond, the bond is classified as what?
- A. Polar
- B. Non-polar
- C. Ionic
- D. Hydrogen
Correct Answer: B
Rationale: The correct answer is B: Non-polar. In a non-polar covalent bond, electrons are shared equally between the atoms involved, leading to a balanced distribution of charge and no significant difference in electronegativity between the atoms. This equal sharing results in a non-polar bond. Choices A, C, and D are incorrect because a polar bond involves an unequal sharing of electrons, an ionic bond is formed by the transfer of electrons, and a hydrogen bond is a specific type of non-covalent bond.
What are negatively charged ions called?
- A. Neutrons
- B. Protons
- C. Anions
- D. Cations
Correct Answer: C
Rationale: Negatively charged ions are called anions. Anions gain electrons and carry a negative charge, which distinguishes them from cations that are positively charged and neutrons and protons that are subatomic particles found in the nucleus of an atom. Choice A, Neutrons, are neutral subatomic particles found in the nucleus of an atom, not negatively charged ions. Choice B, Protons, are positively charged subatomic particles found in the nucleus of an atom, not negatively charged ions. Choice D, Cations, are positively charged ions that lose electrons, which is opposite to the behavior of negatively charged ions.
What does the sum of protons and neutrons in an element represent?
- A. Atomic number
- B. Mass number
- C. Atomic mass
- D. Neutron number
Correct Answer: B
Rationale: The sum of protons and neutrons in an element is known as the mass number. The mass number is an important concept in chemistry as it represents the total number of nucleons (protons and neutrons) in an atom's nucleus. It is different from the atomic number, which represents the number of protons in an atom. The atomic mass is the average mass of an element's isotopes, taking into account the abundance of each isotope. Neutron number, on the other hand, specifically refers to the number of neutrons in an atom's nucleus. Therefore, the correct answer is B, mass number.