What type of reaction is represented by the following equation: Fe2O3 (s) + 3H2 (g) -> 2Fe (s) + 3H2O (g)?
- A. Combustion
- B. Decomposition
- C. Single displacement
- D. Redox reaction
Correct Answer: C
Rationale: The correct answer is C: Single displacement. This reaction is a single displacement reaction because the iron (Fe) in Fe2O3 is displaced by the hydrogen (H) in H2 to form Fe and H2O. In single displacement reactions, one element replaces another in a compound. Choice A, Combustion, involves a reaction with oxygen typically producing heat, light, and often a flame. Choice B, Decomposition, is when a compound breaks down into simpler substances. Choice D, Redox reaction, involves both reduction and oxidation reactions happening simultaneously, which is not the case in the provided equation.
You may also like to solve these questions
What is the relationship between work and energy?
- A. Work is the rate of energy transfer
- B. Work and energy are the same concepts
- C. Work is the result of energy
- D. Work changes an object's energy from one form to another
Correct Answer: A
Rationale: Work is defined as the transfer of energy from one system to another. It is the rate at which energy is transferred or converted. Therefore, work is the rate of energy transfer, making option A the correct choice. Work involves the transfer or conversion of energy, but it is not the same as energy itself, nor is it the result of energy. Additionally, work does not change an object's energy from one form to another; instead, it involves the transfer of energy.
Which of Mendel's Laws states that alleles for a gene segregate during gamete formation?
- A. Law of Independent Assortment
- B. Law of Segregation
- C. Law of Dominance
- D. Law of Probability
Correct Answer: B
Rationale: The Law of Segregation, proposed by Gregor Mendel, states that alleles for a gene segregate during gamete formation. This means that each parent passes on only one allele for each gene to their offspring. This law explains how genetic diversity is maintained and how different combinations of alleles are generated in offspring. The Law of Independent Assortment (option A) is not the correct answer as it states that alleles of different genes assort independently of each other during gamete formation, not specifically alleles of a single gene. The Law of Dominance (option C) is incorrect as it pertains to the expression of alleles rather than their segregation during gamete formation. The Law of Probability (option D) is also incorrect as it is a general concept describing the likelihood of events, not specifically related to alleles segregating during gamete formation.
What is the scientific term for the windpipe, a tube that carries air from the larynx to the bronchi?
- A. Pharynx
- B. Trachea
- C. Epiglottis
- D. Bronchiole
Correct Answer: B
Rationale: The trachea is the correct scientific term for the windpipe, a tube that carries air from the larynx to the bronchi. It is an essential part of the respiratory system, enabling the passage of air to and from the lungs. The pharynx is the region behind the mouth and nasal cavity, acting as a passageway for air and food. The epiglottis is a cartilage flap that shields the trachea during swallowing to prevent food from entering the airway. Bronchioles are smaller airways that branch off from the bronchi within the lungs, further dividing and distributing air within the lungs.
What is the coefficient of oxygen in the balanced chemical equation for the combustion of methane (CHâ‚„)?
- A. 1
- B. 2
- C. 3
- D. 4
Correct Answer: B
Rationale: In the balanced chemical equation for the combustion of methane, CH₄ + 2O₂ → CO₂ + 2H₂O, the coefficient of oxygen (O₂) is 2. This indicates that two molecules of oxygen are required to react with one molecule of methane to produce carbon dioxide and water, ensuring the equation is balanced. Choice A is incorrect because the coefficient of oxygen is not 1 but 2. Choices C and D are incorrect as they do not represent the correct coefficient of oxygen in the balanced equation. Understanding the coefficients in a balanced chemical equation is crucial for accurately representing the stoichiometry of the reaction.
What is the valve that prevents blood from flowing back from the left ventricle into the left atrium?
- A. Tricuspid valve
- B. Mitral valve
- C. Aortic valve
- D. Pulmonic valve
Correct Answer: B
Rationale: The correct answer is the Mitral valve. The mitral valve is located between the left atrium and the left ventricle of the heart. Its function is to prevent the backflow of blood from the left ventricle into the left atrium during ventricular contraction. Choice A, the Tricuspid valve, is incorrect as it is located between the right atrium and right ventricle. Choice C, the Aortic valve, and Choice D, the Pulmonic valve, are also incorrect as they are involved in the circulation of blood leaving the heart rather than preventing backflow within the atria and ventricles.
Nokea