When a car brakes to a stop, friction between the tires and the road acts as:
- A. A balanced force
- B. An unbalanced force causing deceleration
- C. An unbalanced force causing the car to remain at rest
- D. No force at all
Correct Answer: B
Rationale: When a car brakes to a stop, friction between the tires and the road acts as an unbalanced force causing deceleration. This friction force opposes the motion of the car, resulting in a decrease in speed until the car comes to a complete stop. Choice A is incorrect because if the forces were balanced, the car would not experience any deceleration. Choice C is incorrect because if the force were unbalanced in the direction of motion, the car would continue to move instead of coming to a stop. Choice D is incorrect because friction between the tires and the road does exert a force, causing deceleration.
You may also like to solve these questions
Which type of mutation involves a change in the number of chromosomes?
- A. Point mutation
- B. Frameshift mutation
- C. Missense mutation
- D. Aneuploidy
Correct Answer: D
Rationale: A) Point mutation involves a change in a single nucleotide base pair within the DNA sequence.
B) Frameshift mutation involves the insertion or deletion of nucleotides, causing a shift in the reading frame of the genetic code.
C) Missense mutation involves a single nucleotide change that results in a codon that codes for a different amino acid.
D) Aneuploidy involves a change in the number of chromosomes, where an individual may have an extra chromosome (trisomy) or a missing chromosome (monosomy). Aneuploidy can lead to genetic disorders such as Down syndrome (trisomy 21) or Turner syndrome (monosomy X). Changing the number of chromosomes is a characteristic feature of aneuploidy, making it the correct answer. Point mutation, frameshift mutation, and missense mutation do not involve a change in the number of chromosomes and are focused on alterations at the nucleotide level within the DNA sequence.
What is the term for the distance between the center of a lens or curved mirror and its focal point?
- A. Aperture
- B. Focal length
- C. Refractive index
- D. Lens thickness
Correct Answer: B
Rationale: The correct answer is B: Focal length. Focal length is the distance between the center of a lens or curved mirror and its focal point. It determines how strongly the lens converges or diverges light, affecting the image formation. Aperture, choice A, refers to the opening through which light enters the lens, controlling the amount of light passing through. Refractive index, choice C, measures how much light bends when passing through a medium, affecting the speed of light. Lens thickness, choice D, is the physical dimension of the lens, influencing optical properties and compatibility with frames.
When ice melts, it undergoes a...
- A. Chemical change
- B. Physical change
- C. Nuclear change
- D. Radioactive decay
Correct Answer: B
Rationale: When ice melts, it undergoes a physical change, transitioning from a solid state to a liquid state. This change does not involve altering the chemical composition of the ice, making it a physical change rather than a chemical change, nuclear change, or radioactive decay. Choice A, 'Chemical change,' is incorrect because a chemical change involves a rearrangement of atoms resulting in new substances. Choice C, 'Nuclear change,' is incorrect as it refers to changes in the nucleus of an atom, not the phase transition of ice. Choice D, 'Radioactive decay,' is incorrect as it involves the spontaneous disintegration of an unstable atomic nucleus, which is not the process occurring when ice melts.
Which of the following processes breaks down cellular components for recycling or waste removal?
- A. Photosynthesis
- B. Cellular respiration
- C. Cell division
- D. Phagocytosis
Correct Answer: D
Rationale: The correct answer is D: Phagocytosis. Phagocytosis is the process by which cells engulf and break down cellular components or foreign particles for recycling or waste removal. It is a vital mechanism used by cells to maintain homeostasis and remove waste materials. Photosynthesis (A) is the process by which plants convert light energy into chemical energy to produce food, not for breaking down cellular components. Cellular respiration (B) is the process by which cells generate energy from nutrients, not for waste removal. Cell division (C) is the process by which cells replicate and divide to form new cells during growth, repair, or development, not for breaking down cellular components.
Which type of immune cell does the human immunodeficiency virus (HIV) target and destroy?
- A. Neutrophils
- B. Macrophages
- C. Helper T cells
- D. Memory B cells
Correct Answer: C
Rationale: HIV targets and destroys Helper T cells, which are vital for coordinating the immune response against infections. The destruction of Helper T cells weakens the immune system, leading to acquired immunodeficiency syndrome (AIDS). Neutrophils (Choice A) are primarily involved in acute inflammatory responses and fighting bacterial infections. Macrophages (Choice B) play a role in phagocytosis and antigen presentation but are not the primary target of HIV. Memory B cells (Choice D) are responsible for mounting a quicker and more robust antibody response upon re-exposure to a pathogen, but they are not the main target of HIV infection.