When a car is driven for a long time, the pressure of air in the tires increases. This is best explained by which of the following gas laws?
- A. Boyle's law
- B. Charles' law
- C. Gay-Lussac's law
- D. Dalton's law
Correct Answer: C
Rationale: Gay-Lussac's law, also known as the law of pressure-temperature, states that the pressure of a gas is directly proportional to its absolute temperature when the volume is constant. As a car is driven for a long time, the tires heat up due to friction and increased air pressure inside the tires. This results in an increase in temperature, causing the pressure of the air inside the tires to increase according to Gay-Lussac's law. Choices A, B, and D are incorrect. Boyle's law relates pressure and volume, Charles' law relates volume and temperature, and Dalton's law deals with the partial pressures of gases in a mixture.
You may also like to solve these questions
A plucked guitar string makes 80 vibrations in one second. What is the period?
- A. 0.0125 s
- B. 0.025 s
- C. 0.125 s
- D. 0.25 s
Correct Answer: B
Rationale: The period is the time taken for one complete vibration of the guitar string. To find the period, you need to take the reciprocal of the frequency. Since the string makes 80 vibrations in one second, the period is 1/80 = 0.0125 seconds (or 0.025 s). Choice A is incorrect because it is the reciprocal of 80. Choice C is incorrect as it is 10 times the reciprocal of 80. Choice D is incorrect as it is 100 times the reciprocal of 80.
What is the purpose of a switch in a circuit?
- A. To reverse the direction of alternating current
- B. To increase the voltage of the battery or cell
- C. To increase the resistance of wires in the circuit
- D. To allow the circuit to open and close
Correct Answer: D
Rationale: The purpose of a switch in a circuit is to allow the circuit to open and close. When the switch is turned on, it provides a complete path for the current to flow through the circuit. When the switch is turned off, it breaks the circuit, stopping the flow of current. This function of opening and closing the circuit using a switch is essential for controlling the flow of electricity in various electrical devices and systems. Choices A, B, and C are incorrect because a switch does not reverse the direction of current, increase voltage, or increase resistance in a circuit; its primary function is to open and close the circuit.
In hydraulic systems, Pascal's principle states that a pressure change applied to a confined incompressible fluid is:
- A. Amplified but loses energy
- B. Transmitted undiminished throughout the fluid
- C. Limited by the container size
- D. Dependent on the fluid type
Correct Answer: B
Rationale: Pascal's principle states that when a pressure change is applied to a confined incompressible fluid, the resulting pressure change is transmitted undiminished throughout the fluid. This means that the pressure change will be the same at every point in the fluid, regardless of the container size or the type of fluid used. Therefore, choice B is the correct answer. Choices A, C, and D are incorrect because Pascal's principle specifically emphasizes the transmission of pressure without amplification, limitation by container size, or dependence on the fluid type.
Bernoulli's principle for an incompressible, inviscid fluid in steady flow states that the mechanical energy, consisting of:
- A. Pressure (P) only, remains constant along a streamline.
- B. Velocity (v) only, remains constant along a streamline.
- C. P + ½Ïv² (total mechanical energy), remains constant along a streamline
- D. Density (Ï) only, remains constant along a streamline.
Correct Answer: C
Rationale: Bernoulli's principle states that the sum of pressure energy (P), kinetic energy per unit volume (½Ïv²), and potential energy per unit volume remains constant along a streamline in an incompressible, inviscid fluid. This means the total mechanical energy of the fluid is conserved, making Choice C the correct answer. Choices A, B, and D are incorrect because Bernoulli's principle involves the conservation of the total mechanical energy, not just pressure, velocity, or density alone.
Two objects attract each other with a gravitational force of 12 units. If you double the distance between the objects, what is the new force of attraction between the two?
- A. 3 units
- B. 6 units
- C. 24 units
- D. 48 units
Correct Answer: A
Rationale: The gravitational force between two objects is inversely proportional to the square of the distance between them. If the distance is doubled, the force will be reduced to 1/4 of the original force. Therefore, the new force of attraction between the two objects will be 12 units / 4 = 3 units. Choice A is correct because doubling the distance reduces the force to 1/4 of the original value. Choices B, C, and D are incorrect as they do not consider the inverse square relationship between distance and gravitational force.