When a dielectric material is inserted between the plates of a charged capacitor, what will happen to the capacitance?
- A. Increase
- B. Decrease
- C. Remain the same
- D. Become unpredictable
Correct Answer: A
Rationale: When a dielectric material is inserted between the plates of a charged capacitor, the capacitance will increase. This is because the presence of a dielectric material reduces the electric field between the plates, allowing more charge to be stored for a given voltage, thus increasing the capacitance. Choice B is incorrect because adding a dielectric material increases capacitance. Choice C is incorrect because capacitance changes when a dielectric is added. Choice D is incorrect because the effect of a dielectric on capacitance is predictable.
You may also like to solve these questions
Jack stands in front of a plane mirror. If he is 5 feet away from the mirror, how far away from Jack is his image?
- A. 2.5 feet
- B. 3 feet
- C. 4.5 feet
- D. 5 feet
Correct Answer: D
Rationale: When Jack stands in front of a plane mirror, his image appears the same distance behind the mirror as Jack is in front of it. Therefore, if Jack is 5 feet away from the mirror, his image will also appear 5 feet behind the mirror. The total distance from Jack to his image is the sum of these distances, which equals 10 feet. Choices A, B, and C are incorrect because the image distance is not half of the total distance but the same as the object's distance from the mirror.
A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?
- A. 31 cm
- B. 40 cm
- C. 50 cm
- D. 56 cm
Correct Answer: A
Rationale: When the 12 N force stretches the spring from 25 cm to 28 cm, it causes a length increase of 28 cm - 25 cm = 3 cm. Therefore, each newton of applied force causes an extension of 3 cm / 12 N = 0.25 cm/N. If the force is doubled to 24 N, the spring would extend by 24 N 0.25 cm/N = 6 cm more than its original length of 25 cm. Thus, the new length of the spring would be 25 cm + 6 cm = 31 cm. Choice A, 31 cm, is the correct answer as calculated. Choices B, C, and D are incorrect as they do not consider the relationship between force and extension in the spring, leading to incorrect calculations of the new length.
Which of the following materials has the lowest density?
- A. Water
- B. Cork
- C. Aluminum
- D. Steel
Correct Answer: B
Rationale: Cork has the lowest density among the given options. Cork is a lightweight material derived from the bark of cork oak trees and is known for its low density, making it float on water. Water, aluminum, and steel have higher densities compared to cork. Water is denser than cork because it has a consistent density of 1 g/cm³. Aluminum and steel are metals with much higher densities due to their atomic structures, making them denser than cork.
When a gas is compressed isothermally, we can say that:
- A. The gas performs work on the surroundings, and its internal energy increases.
- B. The gas performs work on the surroundings, and its internal energy decreases.
- C. The surroundings perform work on the gas, and its internal energy increases.
- D. The surroundings perform work on the gas, and its internal energy decreases.
Correct Answer: D
Rationale: When a gas is compressed isothermally, the surroundings perform work on the gas. In this process, since the temperature remains constant (isothermal), the internal energy of the gas does not change. Therefore, the correct answer is that the surroundings perform work on the gas, and its internal energy decreases. Choices A, B, and C are incorrect because they incorrectly describe the direction of work and the change in internal energy during an isothermal compression.
Fluids can be categorized based on their shear stress-strain rate relationship. An ideal fluid exhibits:
- A. Zero shear stress at any strain rate
- B. Linear relationship between shear stress and strain rate (Newtonian)
- C. Non-linear relationship between shear stress and strain rate (Non-Newtonian)
- D. High dependence of viscosity on temperature
Correct Answer: A
Rationale: An ideal fluid, often referred to as an inviscid fluid, is a theoretical concept used in fluid mechanics to simplify calculations. It is characterized by having zero shear stress at any strain rate. In reality, such fluids do not exist, but they serve as a useful starting point for understanding fluid behavior in idealized situations. Choice B is incorrect because a linear relationship between shear stress and strain rate defines a Newtonian fluid, not an ideal fluid. Choice C is incorrect because a non-linear relationship between shear stress and strain rate characterizes Non-Newtonian fluids, not ideal fluids. Choice D is incorrect because the high dependence of viscosity on temperature is a characteristic seen in real fluids and does not define an ideal fluid.