When balanced, the reaction Fe + O₂ → FeO will be?
- A. 2Fe + 2O₂ → 3FeO
- B. 4Fe + 6O₂ → 6FeO
- C. 2Fe + 3O₂ → 2FeO
- D. 4Fe + 3O₂ → 2FeO
Correct Answer: C
Rationale: To balance the chemical equation Fe + O₂ → FeO, the coefficients needed are 2 for Fe and 1 for O. Therefore, the balanced equation becomes 2Fe + O₂ → 2FeO, which translates into 2Fe + 3O₂ → 2FeO. This corresponds to option C. Choice A has the incorrect number of oxygen molecules. Choice B has an incorrect number of Fe atoms on the product side. Choice D also has an incorrect number of Fe atoms on the product side.
You may also like to solve these questions
What is atomic mass?
- A. Number of protons in an atom
- B. Sum of protons and neutrons
- C. Number of neutrons in an atom
- D. Average weight of an element
Correct Answer: B
Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass.
Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.
Which of these intermolecular forces would result in the lowest boiling point?
- A. Dipole-dipole interaction
- B. London dispersion force
- C. Keesom interaction
- D. Hydrogen bonding
Correct Answer: B
Rationale: The London dispersion force is the weakest intermolecular force among the options provided. These forces are present in all molecules and are caused by temporary fluctuations in electron density, resulting in temporary dipoles. Since London dispersion forces are generally weaker than dipole-dipole interactions, Keesom interactions, and hydrogen bonding, a substance with London dispersion forces as the primary intermolecular force would have the lowest boiling point due to the weaker intermolecular forces holding the molecules together. Dipole-dipole interactions, Keesom interactions, and hydrogen bonding are stronger intermolecular forces compared to London dispersion forces, resulting in higher boiling points for substances that exhibit these interactions.
What are proteins made up of?
- A. Fatty acids
- B. Amino acids
- C. Nucleotides
- D. Sugars
Correct Answer: B
Rationale: Proteins are made up of amino acids. Amino acids are the building blocks of proteins, essential for various biological processes in the body such as enzyme function, transport, and structural support. Fatty acids (Choice A) are components of lipids, not proteins. Nucleotides (Choice C) are the building blocks of nucleic acids like DNA and RNA, not proteins. Sugars (Choice D) are carbohydrates and are not the primary components of proteins.
Which compound contains a polar covalent bond?
- A. O
- B. F
- C. Br
- D. Hâ‚‚O
Correct Answer: D
Rationale: The compound 'Hâ‚‚O' (water) contains a polar covalent bond. In a water molecule, the oxygen atom is more electronegative than the hydrogen atoms. As a result, the electrons in the O-H bonds are unevenly shared, leading to a partial negative charge on the oxygen atom and partial positive charges on the hydrogen atoms. This unequal sharing of electrons creates a polar covalent bond in water. Choices A, B, and C are incorrect because they represent individual elements, not compounds, and do not involve the concept of polar covalent bonds.
What is the correct name of ZnSOâ‚„?
- A. Zinc sulfate
- B. Zinc sulfide
- C. Zinc sulfur
- D. Zinc oxide
Correct Answer: A
Rationale: The correct name of ZnSOâ‚„ is zinc sulfate. In this compound, zinc is combined with the polyatomic ion sulfate (SOâ‚„). Sulfate is a common anion formed from sulfur and oxygen atoms. Therefore, the correct name for ZnSOâ‚„ is zinc sulfate. Choice B, Zinc sulfide, is incorrect because sulfide is a different anion (S²â») compared to sulfate (SOâ‚„²â»). Choice C, Zinc sulfur, is incorrect as it does not represent the correct anion in the compound. Choice D, Zinc oxide, is incorrect as it involves an oxygen anion, not sulfate.