Which division of the autonomic nervous system is responsible for the 'rest and digest' response, promoting relaxation and conservation of energy?
- A. Sympathetic nervous system
- B. Parasympathetic nervous system
- C. Somatic nervous system
- D. Central nervous system
Correct Answer: B
Rationale: The correct answer is B: Parasympathetic nervous system. The parasympathetic nervous system is responsible for the 'rest and digest' response, promoting relaxation, conserving energy, and facilitating activities like digestion and lowering heart rate. The sympathetic nervous system, which is not the correct answer, triggers the 'fight or flight' response, preparing the body for stressful situations by increasing heart rate, dilating airways, and releasing adrenaline. The somatic nervous system (choice C) controls voluntary movements, not the autonomic functions related to 'rest and digest.' The central nervous system (choice D) includes the brain and spinal cord and is not specifically involved in the autonomic regulation of bodily functions like the 'rest and digest' response.
You may also like to solve these questions
What is the net ionic equation for the reaction: 2HCl(aq) + Ba(OH)2(aq) → 2H2O(l) + BaCl2(aq)?
- A. 2H+(aq) + 2OH-(aq) → 2H2O(l)
- B. 2HCl(aq) + Ba(OH)2(aq) → BaCl2(aq) + 2H2O(l)
- C. 2H+(aq) + Ba2+(aq) → Ba2+(aq) + 2H+(aq)
- D. Ba(OH)2(aq) + HCl(aq) → BaCl2(aq) + 2H2O(l)
Correct Answer: A
Rationale: In the given reaction, the complete ionic equation is: 2H+(aq) + 2Cl-(aq) + Ba2+(aq) + 2OH-(aq) → 2H2O(l) + Ba2+(aq) + 2Cl-(aq). Spectator ions (Ba2+ and Cl-) do not participate in the net ionic equation, which simplifies to: 2H+(aq) + 2OH-(aq) → 2H2O(l). This equation represents the significant species involved in the reaction, showcasing the formation of water from the combination of hydrogen ions and hydroxide ions, resulting in the production of water molecules.
How do sweat glands help regulate body temperature?
- A. Producing sebum for lubrication
- B. Constricting blood vessels in the skin
- C. Releasing a watery fluid that evaporates for cooling
- D. Thickening the epidermis for insulation
Correct Answer: C
Rationale: Sweat glands play a vital role in regulating body temperature by releasing a watery fluid that evaporates from the skin's surface. This evaporation process helps cool the body down by dissipating heat, which is essential for maintaining a stable internal temperature. Choice A is incorrect because sweat glands do not produce sebum but rather a watery fluid. Choice B is incorrect because sweating itself does not involve the constriction of blood vessels; instead, it promotes heat loss through evaporation. Choice D is incorrect as sweat glands do not thicken the epidermis for insulation but rather facilitate the cooling process through sweat evaporation.
How can a single gene mutation lead to multiple phenotypes depending on the organism?
- A. Pleiotropy describes the effect of one gene influencing multiple seemingly unrelated traits.
- B. Epigenetics involves environmental factors modifying gene expression without altering the DNA sequence.
- C. Genetic drift refers to random changes in allele frequencies within a population.
- D. Gene regulation controls the timing and level of gene expression within an organism.
Correct Answer: A
Rationale: A single gene mutation can lead to multiple phenotypes through pleiotropy, where one gene influences diverse traits or functions in an organism. This phenomenon occurs when the mutated gene affects different biochemical pathways, developmental processes, or cellular functions, resulting in a cascade of downstream effects that manifest as a variety of phenotypic outcomes. Choice B, epigenetics, involves modifications in gene expression influenced by environmental factors without altering the DNA sequence, which is not directly related to the question about single gene mutations causing multiple phenotypes. Choice C, genetic drift, refers to random changes in allele frequencies within a population, which is unrelated to the impact of a single gene mutation on multiple phenotypes. Choice D, gene regulation, focuses on controlling the timing and level of gene expression within an organism, which is not directly addressing how a single gene mutation can lead to diverse phenotypes.
Which hormone, produced by the adrenal glands, plays a crucial role in the body's response to stress, including the regulation of salt and water balance?
- A. Aldosterone
- B. Epinephrine
- C. Cortisol
- D. Insulin
Correct Answer: A
Rationale: Aldosterone is the correct answer. It is a hormone produced by the adrenal glands that plays a crucial role in the body's response to stress by regulating salt and water balance. Aldosterone acts on the kidneys to increase the reabsorption of sodium and water, helping to maintain blood pressure and electrolyte balance during stressful situations. Epinephrine, also known as adrenaline, and cortisol are other hormones produced by the adrenal glands, but they have different functions in the stress response. Epinephrine primarily acts to increase heart rate and blood flow in response to stress, while cortisol helps regulate metabolism, immune response, and inflammation. Insulin, on the other hand, is produced by the pancreas and is involved in regulating blood sugar levels, not salt and water balance.
Which of the following types of muscle tissue is found attached to bones and allows for voluntary movement?
- A. Smooth muscle
- B. Cardiac muscle
- C. Skeletal muscle
- D. Connective tissue
Correct Answer: C
Rationale: The correct answer is C: Skeletal muscle. Skeletal muscle is attached to bones and allows for voluntary movement, such as walking, running, and lifting objects. Smooth muscle, found in the walls of internal organs and blood vessels, is responsible for involuntary movements. Cardiac muscle is specific to the heart and controls involuntary contraction. Connective tissue, on the other hand, provides support and connects different structures in the body, but it is not responsible for voluntary movement like skeletal muscle.