Which enzyme plays a crucial role in DNA replication during the S phase of interphase?
- A. Helicase
- B. DNA polymerase
- C. Ligase
- D. Topoisomerase
Correct Answer: B
Rationale: During the S phase of interphase, DNA replication takes place. DNA polymerase is the enzyme responsible for synthesizing new DNA strands by adding nucleotides in a complementary manner to the template strand. It plays a pivotal role in accurately replicating the entire genome. While helicase unwinds the double-stranded DNA for replication, topoisomerase relieves the tension in the DNA strands, and ligase joins the Okazaki fragments on the lagging strand. However, DNA polymerase directly participates in the synthesis of new DNA strands during replication, making it the correct answer.
You may also like to solve these questions
At the peak of a baseball's trajectory, which of the following forces is acting on the ball?
- A. Only gravitational force
- B. Only the force of air resistance
- C. Both gravitational force and the force of air resistance
- D. Neither gravitational force nor the force of air resistance
Correct Answer: A
Rationale: At the peak of a baseball's trajectory, the ball momentarily stops moving upwards before it starts to fall back down. During this moment of temporary rest, the only force acting on the ball is the gravitational force pulling it downward towards the Earth. The force of air resistance is negligible at this point because the ball is momentarily stationary, and air resistance requires motion to be significant. Therefore, the correct answer is that only the gravitational force is acting on the ball at the peak of its trajectory. Choices B, C, and D are incorrect because air resistance does not have a significant effect when the ball is at its peak and momentarily stationary.
Which type of symbiosis benefits both organisms from the interaction?
- A. Mutualism
- B. Commensalism
- C. Parasitism
- D. Predation
Correct Answer: A
Rationale: The correct answer is 'Mutualism.' Mutualism is a type of symbiosis where both organisms involved benefit from the interaction. This relationship is characterized by cooperation and mutual support, leading to advantages for both parties. In mutualistic relationships, each organism provides something that the other needs, resulting in a mutually beneficial outcome. In contrast, 'Commensalism' (choice B) involves one organism benefiting while the other is unaffected, 'Parasitism' (choice C) benefits one organism at the expense of the other, and 'Predation' (choice D) benefits the predator while harming the prey. Examples of mutualism include the relationship between bees and flowers (pollination) and the partnership between nitrogen-fixing bacteria and leguminous plants.
What is the relationship between mass and weight on Earth's surface?
- A. Mass and weight are equal
- B. Mass is greater than weight
- C. Weight is greater than mass
- D. Mass and weight are not related
Correct Answer: C
Rationale: The correct answer is C: Weight is greater than mass. Mass is a measure of the amount of matter in an object, while weight is the force of gravity acting on that object. On Earth's surface, weight is greater than mass because gravity pulls objects towards the center of the Earth, resulting in a force that we perceive as weight. Choice A is incorrect because mass and weight are not equal; weight is a force, while mass is a measure of the amount of matter. Choice B is incorrect because mass is not greater than weight; weight is the force exerted due to gravity. Choice D is incorrect as mass and weight are related; weight is dependent on mass and the gravitational force acting on the object.
The transfer of energy through feeding relationships in an ecosystem is called a:
- A. Food Chain
- B. Food Web
- C. Habitat
- D. Biome
Correct Answer: A
Rationale: A food chain is a linear sequence of organisms where each organism consumes the one below it and is consumed by the one above it. This transfer of energy through feeding relationships is a fundamental concept in ecology to understand how energy flows through an ecosystem. In a food chain, energy is transferred from producers (plants) to primary consumers (herbivores), then to secondary consumers (carnivores), and so on. Each step in the food chain represents a trophic level, and energy is lost as heat at each level, resulting in a pyramid-shaped energy flow. Food webs, on the other hand, represent a more complex network of interconnected food chains within an ecosystem. Habitats refer to the specific environments where organisms live, and biomes are large geographical areas characterized by specific climates and vegetation types. Therefore, the correct answer is 'Food Chain' as it specifically describes the linear transfer of energy through feeding relationships in an ecosystem.
How does the stability of an atom's nucleus influence its radioactive decay?
- A. Stable nuclei never undergo radioactive decay.
- B. Unstable nuclei are more likely to decay through various processes.
- C. Decay releases energy, making stable nuclei more prone to it.
- D. The element's position on the periodic table determines its decay rate.
Correct Answer: B
Rationale: Unstable nuclei are more likely to decay through various processes. The stability of an atom's nucleus is a crucial factor in determining whether it will undergo radioactive decay. Unstable nuclei have an excess of either protons or neutrons, causing an imbalance in the nucleus. To achieve a more stable configuration, these nuclei will undergo radioactive decay by emitting particles or energy. On the contrary, stable nuclei are less likely to undergo radioactive decay as they possess a balanced number of protons and neutrons. Choice A is incorrect because stable nuclei can still undergo radioactive decay, albeit less frequently. Choice C is incorrect as decay does not make stable nuclei more prone to it; rather, it stabilizes them. Choice D is incorrect because an element's decay rate is primarily determined by the nucleus's stability, not its position on the periodic table.
Nokea