Which is a triatomic allotrope of oxygen?
- A. Ozone
- B. Water
- C. Acidic oxide
- D. Carbon dioxide
Correct Answer: A
Rationale: Ozone (O3) is a triatomic allotrope of oxygen. It differs from the common diatomic oxygen molecule (O2) by having three oxygen atoms bonded together. Ozone is known for its protective role in the Earth's atmosphere, absorbing most of the Sun's harmful ultraviolet radiation. Water (H2O) is a compound composed of two hydrogen atoms and one oxygen atom. Acidic oxide and carbon dioxide are not triatomic allotropes of oxygen. Carbon dioxide consists of one carbon atom and two oxygen atoms, while acidic oxides refer to compounds where oxygen is bonded with other elements to form oxides, and they are not allotropes of oxygen.
You may also like to solve these questions
What is the oxidation state of the nitrogen atom in the compound NH3?
- A. -3
- B. -1
- C. +1
- D. +3
Correct Answer: B
Rationale: In the compound NH3, nitrogen is bonded to three hydrogen atoms. Hydrogen is always assigned an oxidation state of +1. Since the overall charge of NH3 is zero, the oxidation state of nitrogen must be -1 to balance out the hydrogen's +1 oxidation state. Therefore, the correct oxidation state of the nitrogen atom in NH3 is -1. Choice A (-3) is incorrect because it does not account for the electronegativity of hydrogen. Choice C (+1) and Choice D (+3) are incorrect as the nitrogen atom in NH3 needs to balance the +1 oxidation state of each hydrogen atom, resulting in a total of -3 to maintain the compound's charge neutrality.
What does a blood sample with a pH of 3 indicate?
- A. It is strongly acidic.
- B. It is strongly basic.
- C. It is weakly acidic.
- D. It is weakly basic.
Correct Answer: A
Rationale: A blood pH of 3 is significantly low, indicating a strong acidity level. The normal blood pH range is 7.35 to 7.45; therefore, a pH of 3 is far below the normal range, showing a highly acidic condition in the blood sample. Choice B is incorrect because a pH of 3 is not basic at all. Choice C is incorrect as a pH of 3 is not weakly acidic but strongly acidic. Choice D is wrong as a blood pH of 3 does not indicate a weakly basic condition.
Which of the following compounds is ionic?
- A. NaCl
- B. Hâ‚‚O
- C. HCl
- D. NH₃
Correct Answer: A
Rationale: The correct answer is NaCl (sodium chloride). Ionic compounds are formed by the transfer of electrons between a metal and a nonmetal. In NaCl, sodium (Na) is a metal, and chlorine (Cl) is a nonmetal. Sodium donates an electron to chlorine, leading to the formation of the ionic bond between them. This results in the formation of an ionic compound, where positively charged sodium ions are attracted to negatively charged chloride ions, creating a crystal lattice structure. Choices B, C, and D are not ionic compounds. H₂O (water) is a covalent compound formed by the sharing of electrons between two nonmetals (oxygen and hydrogen). HCl (hydrogen chloride) and NH₃ (ammonia) are also covalent compounds involving nonmetals sharing electrons, not transferring them.
What is the correct formula for sodium nitrate?
- A. NaNO
- B. Na NO
- C. NaNO₃
- D. Na NOâ‚‚
Correct Answer: C
Rationale: The correct formula for sodium nitrate is NaNO₃. In this formula, 'Na' represents sodium, 'N' represents nitrogen, and 'O₃' represents three oxygen atoms. Sodium nitrate consists of one sodium ion (Naâº) and one nitrate ion (NO₃â»), which means the correct formula is NaNO₃. Choice A (NaNO) is incorrect as it lacks the subscript indicating the presence of three oxygen atoms. Choice B (Na NO) is incorrect as it includes a space between 'Na' and 'NO', which is not part of the standard chemical formula notation. Choice D (Na NOâ‚‚) is incorrect as it indicates a different compound with a nitrite ion (NOâ‚‚â») instead of nitrate ion.
A radioactive isotope has a half-life of 20 years. How many grams of a 6-gram sample will remain after 40 years?
- A. 8
- B. 6
- C. 3
- D. 1.5
Correct Answer: C
Rationale: The half-life of a radioactive isotope is the time it takes for half of the original sample to decay. After each half-life period, half of the initial sample remains. In this case, after the first 20 years, half of the 6-gram sample (3 grams) will remain. After another 20 years (total of 40 years), half of the remaining 3 grams will remain, which is 1.5 grams. Therefore, 3 grams will be left after 40 years. Choice A is incorrect as it doesn't consider the concept of half-life and incorrectly suggests an increase in the sample. Choice B is incorrect as it assumes no decay over time. Choice D is incorrect as it miscalculates the remaining amount after two half-life periods.