Which names a final step in protein synthesis?
- A. DNA unzips.
- B. Amino acids bond.
- C. Transfer RNA bonds to messenger RNA.
- D. Messenger RNA moves to ribosomes.
Correct Answer: B
Rationale: The final step in protein synthesis is when amino acids bond together to form a protein chain. This process occurs during translation, where transfer RNA (tRNA) brings specific amino acids to the ribosome, and the ribosome catalyzes the formation of peptide bonds between the amino acids. This step ultimately leads to the synthesis of a complete protein based on the instructions from messenger RNA (mRNA).
Choice A ('DNA unzips') is incorrect as it refers to the initiation of transcription, not the final step of protein synthesis. Choice C ('Transfer RNA bonds to messenger RNA') is incorrect as it describes the process of translation initiation rather than the final step. Choice D ('Messenger RNA moves to ribosomes') is also incorrect as mRNA is already present at the ribosomes throughout the translation process, not just in the final step.
You may also like to solve these questions
Whose energy efficiency is greater?
- A. Herbivore
- B. Carnivore
- C. Omnivore
- D. Decomposer
Correct Answer: D
Rationale: Decomposers have the greatest efficiency of energy among the given options. Decomposers break down organic matter, such as dead plants and animals, into simpler substances through the process of decomposition. This breakdown process results in the release of nutrients back into the ecosystem, making energy more readily available for other organisms to use. In contrast, herbivores, carnivores, and omnivores all derive their energy from the consumption of other living organisms, making their energy efficiency lower than that of decomposers. Herbivores consume plants for energy, which involves energy loss due to inefficiencies in converting plant matter into usable energy. Carnivores consume herbivores or other carnivores, leading to further energy loss through each trophic level. Omnivores consume both plant and animal matter, but their energy efficiency is still lower than decomposers because of the energy loss associated with consuming living organisms. Decomposers play a crucial role in recycling nutrients and energy in ecosystems, making them highly efficient in the utilization of energy.
Which color of light is least effective at driving photosynthesis?
- A. Violet
- B. Green
- C. Orange
- D. Red
Correct Answer: B
Rationale: Green light is the least effective at driving photosynthesis because chlorophyll, the primary pigment responsible for absorbing light in plants, does not absorb green light well. Instead, chlorophyll absorbs more effectively in the blue and red regions of the light spectrum. Therefore, green light is relatively less efficient in promoting photosynthesis compared to violet, orange, and red light. Violet light, although at the shorter wavelength end of the spectrum, can still drive photosynthesis better than green light. Orange and red light are more efficiently absorbed by chlorophyll, making them more effective in driving the process of photosynthesis.
Huntington's disease is carried on the dominant allele. In a situation where two heterozygous parents have the disease, what percentage of their offspring are predicted to be disease-free?
- A. 0%
- B. 25%
- C. 50%
- D. 100%
Correct Answer: B
Rationale: In this scenario, both parents are heterozygous for Huntington's disease, meaning each carries one dominant allele (representing the disease) and one recessive allele (representing no disease). When they have offspring, there is a 25% chance that each child will inherit two recessive alleles, making them disease-free. The Punnett square for two heterozygous parents (Hh x Hh) yields a 25% probability of offspring being homozygous recessive (hh) and therefore disease-free. Choice A (0%) is incorrect because there is a possibility of disease-free offspring. Choice C (50%) is incorrect as it represents the likelihood of being a carrier. Choice D (100%) is incorrect as all offspring will not be disease-free in this scenario.
What happens to messenger RNA when it reaches the cytoplasm?
- A. It attaches to a ribosome.
- B. It unzips, exposing nitrogen bases.
- C. It pairs with the DNA bases.
- D. It pulls free of the DNA strand.
Correct Answer: A
Rationale: Messenger RNA (mRNA) carries genetic information from the DNA in the nucleus to the ribosomes in the cytoplasm. When mRNA reaches the cytoplasm, it attaches to a ribosome. The ribosome functions as the site for protein synthesis through translation, where the genetic code carried by mRNA is read and translated into a specific sequence of amino acids. Choices B, C, and D are incorrect because mRNA does not unzip, expose nitrogen bases, pair with DNA bases, or pull free of the DNA strand in the cytoplasm. The primary function of mRNA in the cytoplasm is to serve as a template for protein synthesis by binding to ribosomes.
How should a researcher test the hypothesis that practicing yoga reduces blood pressure?
- A. Record the blood pressure of one male and one female participant before and after participating in a yoga class.
- B. Divide 30 female participants into two groups with similar average blood pressure; test each participant's blood pressure after participating in a yoga class.
- C. Divide 30 female participants into two groups with similar average blood pressure; have one group watch television for an hour while the other takes a yoga class, record each participant's blood pressure after the hour. Repeat daily for two weeks.
- D. Start with 15 men and 15 women; have the men watch television for an hour while the women take a yoga class, record each participant's blood pressure after the hour. Reverse, having the men take a yoga class while the women watch television.
Correct Answer: B
Rationale: Option B is the most appropriate way to test the hypothesis that practicing yoga reduces blood pressure. By dividing 30 female participants into two groups with similar average blood pressure levels and testing each participant's blood pressure after participating in a yoga class, the researcher can effectively evaluate the impact of yoga on blood pressure. This design allows for a comparison between the two groups, helping to isolate the effects of yoga practice on blood pressure. Option A only involves one male and one female participant, which may not provide a representative sample. Option C introduces an additional variable of watching television, which could confound the results. Option D lacks consistency in the experimental design by switching the activities between men and women, making it difficult to attribute any observed changes solely to yoga practice.