Which of the following describes the general function of cytokines in the immune system?
- A. They communicate between cells to instigate an immune response.
- B. They inhibit blood clotting during inflammation responses.
- C. They bind to specific pathogens to increase pathogen mass.
- D. They transport pathogens trapped in mucus to be destroyed in the stomach.
Correct Answer: A
Rationale: The correct answer is A: 'They communicate between cells to instigate an immune response.' Cytokines are signaling molecules that act as messengers between cells in the immune system, playing a vital role in coordinating and regulating immune responses. They communicate with various immune cells to initiate appropriate responses against pathogens. Choice B is incorrect because cytokines do not inhibit blood clotting but rather regulate immune responses. Choice C is incorrect as cytokines do not bind to specific pathogens to increase their mass; instead, they regulate the immune response. Choice D is also incorrect because cytokines do not transport pathogens trapped in mucus to the stomach for destruction; they primarily function as signaling molecules within the immune system.
You may also like to solve these questions
Which of the following correctly describes a strong acid?
- A. A strong acid completely ionizes in water.
- B. A strong acid donates more than one proton.
- C. A strong acid contains at least one metal atom.
- D. A strong acid will not decompose.
Correct Answer: A
Rationale: The correct answer is A. A strong acid is defined as an acid that completely ionizes in water, meaning it dissociates fully into its constituent ions in solution. This characteristic differentiates strong acids from weak acids, which do not fully dissociate in water. Choice B is incorrect because the number of protons donated does not solely define the strength of an acid. Choice C is incorrect as strong acids are not defined by the presence of metal atoms, and Choice D is incorrect because all acids can decompose, but the strength of the acid is based on its ability to ionize in water.
Muscle tissues often require quick bursts of energy. As a result, which of the following organelles would be most likely to be found in higher than normal amounts in muscle cells?
- A. ribosomes
- B. chloroplasts
- C. vacuoles
- D. mitochondria
Correct Answer: D
Rationale: Muscle tissues require quick bursts of energy for activities such as contraction and relaxation. Mitochondria are known as the powerhouse of the cell, producing energy in the form of ATP through cellular respiration. Therefore, muscle cells would require higher amounts of mitochondria to meet their energy demands. Ribosomes are involved in protein synthesis and are not directly related to energy production. Chloroplasts are found in plant cells and are responsible for photosynthesis, not in animal muscle cells. Vacuoles are primarily involved in storage, maintaining turgor pressure, and digestion, but they are not the main organelles involved in energy production.
Chromatids divide into identical chromosomes and migrate to opposite ends of the cell in which of the following phases of mitosis?
- A. metaphase
- B. anaphase
- C. prophase
- D. telophase
Correct Answer: B
Rationale: During anaphase of mitosis, the sister chromatids detach from each other and migrate to opposite poles of the cell. This process ensures that each daughter cell ultimately receives an identical set of chromosomes, as the chromatids separate and become individual chromosomes again. This is a crucial step in ensuring accurate distribution of genetic material during cell division. In metaphase, the chromosomes align at the cell's equator but do not separate yet. Prophase is the phase where chromatin condenses into chromosomes and the nuclear envelope breaks down. Telophase is the final phase where the nuclear envelope reforms around the separated chromosomes.
Which of the following is the primary physical barrier the body uses to prevent infection?
- A. mucus membranes
- B. stomach acid
- C. skin
- D. urine
Correct Answer: C
Rationale: The correct answer is 'C: skin.' The skin is the primary physical barrier the body uses to prevent infection. It acts as a protective shield that prevents harmful microorganisms from entering the body. The outer layer of the skin, known as the epidermis, acts as a tough physical barrier that blocks the entry of pathogens. Additionally, the skin has special immune cells that can help fight off invaders that manage to breach the physical barrier. Choices A, B, and D are incorrect. While mucous membranes, stomach acid, and urine play important roles in the body's defense against pathogens, the primary physical barrier is the skin, which covers the entire body and provides a robust protective barrier.
Which of the following distinguishes the isotopes of an element?
- A. Isotopes are atoms of the same element that have different ionic charges.
- B. Isotopes are atoms of elements within the same group on the periodic table.
- C. Isotopes are atoms of the same element that have different numbers of neutrons.
- D. Isotopes are atoms of the same element with different electron configurations.
Correct Answer: C
Rationale: Isotopes are defined as atoms of the same element that have the same number of protons in their nucleus but different numbers of neutrons. This leads to variations in atomic mass for isotopes of an element. The different number of neutrons in isotopes results in differences in their atomic mass and properties while still belonging to the same element. Choice A is incorrect because isotopes do not have different ionic charges, they have the same chemical properties. Choice B is incorrect because isotopes are not atoms of elements within the same group on the periodic table; they are variants of the same element. Choice D is incorrect because isotopes of an element have the same electron configuration, differing only in the number of neutrons in the nucleus.