Which of the following factors would not affect rates of reaction?
- A. Temperature
- B. Surface area
- C. Pressure
- D. Time
Correct Answer: D
Rationale: Time would not directly affect rates of reaction. The rate of a chemical reaction is determined by factors that affect the frequency of successful collisions between reactant molecules, leading to a reaction. Temperature, surface area, and pressure can influence reaction rates by impacting the kinetic energy of molecules, the exposed surface for collisions, and the concentration of reactants, respectively. However, time, in the context of this question, does not alter the rate of reaction but may affect the extent of the reaction or the amount of product formed over time.
You may also like to solve these questions
A salt solution has a molarity of 5 M. How many moles of this salt are present in 0 L of this solution?
- B. 1.5
- C. 2
- D. 3
Correct Answer: A
Rationale: Molarity is defined as the number of moles of solute per liter of solution. A molarity of 5 M indicates there are 5 moles of salt in 1 liter of the solution. Since the volume of the solution is 0 liters, multiplying the molarity by 0 liters results in 0 moles of salt (5 moles/L x 0 L = 0 moles). Therefore, the correct answer is 0. Option B, 1.5, is incorrect because it doesn't consider the volume being 0 liters. Options C and D, 2 and 3 respectively, are also incorrect as they do not account for the zero volume of the solution. Hence, there are no moles of salt present in 0 liters of the solution.
How many times more acidic is a substance with a pH of 3 compared to a substance with a pH of 5?
- A. 8
- B. 2
- C. 100
- D. 1,000
Correct Answer: D
Rationale: The pH scale is logarithmic, indicating that each pH unit change reflects a 10-fold difference in acidity level. Going from pH 5 to pH 3 involves a difference of 2 units, which translates to a 100-fold increase in acidity level (10^2 = 100 for each unit). Therefore, a substance with a pH of 3 is 1,000 times more acidic than a substance with a pH of 5 (100 * 10 = 1,000). Choice A (8) is incorrect as it does not consider the logarithmic nature of the pH scale. Choice B (2) is incorrect because it represents the difference in pH units, not the increase in acidity level. Choice C (100) is incorrect as it miscalculates the increase in acidity level, which is 1,000 times and not 100 times.
What is the normal body temperature in Fahrenheit?
- A. 96°F
- B. 98.6°F
- C. 100°F
- D. 95°F
Correct Answer: B
Rationale: The normal body temperature for humans is 98.6°F, which is equivalent to 37°C. This temperature is considered the average baseline for most individuals when measured orally. Choice A (96°F) is too low for normal body temperature. Choice C (100°F) is too high for normal body temperature. Choice D (95°F) is also lower than the normal body temperature range. Therefore, the correct answer is B, 98.6°F.
Which ion would you expect to dominate in water solutions of bases?
- A. MgClâ‚‚
- B. 2HCl
- C. Hâº
- D. OHâ»
Correct Answer: D
Rationale: In water solutions of bases, the dominant ion would be OH⻠(hydroxide ion). Bases release OH⻠ions when dissolved in water, increasing the concentration of hydroxide ions and leading to a higher pH. This is in contrast to acids, which release H⺠ions. Therefore, in water solutions of bases, the presence of OH⻠ions signifies the basic nature of the solution. Choices A, B, and C are incorrect because MgCl₂ is a salt, 2HCl is a compound consisting of two hydrogen ions and one chloride ion, and H⺠represents a hydrogen ion typically associated with acids, not bases.
The molar mass of glucose is 180 g/mol. If an IV solution contains 5 g of glucose in 100 g of water, what is the molarity of the solution?
- A. 0.28M
- B. 1.8M
- C. 2.8M
- D. 18M
Correct Answer: C
Rationale: To calculate the molarity of the solution, we first need to determine the moles of solute (glucose) and solvent (water) separately. The molar mass of glucose is 180 g/mol. First, calculate the moles of glucose: 5 g / 180 g/mol = 0.02778 mol of glucose. Next, calculate the moles of water: 100 g / 18 g/mol = 5.56 mol of water. Now, calculate the total moles in the solution: 0.02778 mol glucose + 5.56 mol water = 5.5878 mol. Finally, calculate the molarity: Molarity = moles of solute / liters of solution. Since the total mass of the solution is 100 g + 5 g = 105 g = 0.105 kg, which is equal to 0.105 L, the molarity is 5.5878 mol / 0.105 L = 53.22 M, which rounds to 2.8M. Therefore, the correct answer is 2.8M. Choices A, B, and D are incorrect because they do not reflect the accurate molarity calculation based on the moles of solute and volume of the solution.