Which of the following is the antiparticle of a neutron?
- A. Antineutrino
- B. Positron
- C. Antiproton
- D. Electron
Correct Answer: C
Rationale: The antiparticle of a neutron is an antineutron, which is composed of an antiproton and an antineutrino. The antineutrino (choice A) is not the antiparticle of a neutron. A positron (choice B) is the antiparticle of an electron, not a neutron. An electron (choice D) is a fundamental particle, not an antiparticle. Therefore, the correct answer is an antiproton (choice C), as it forms an antineutron when combined with an antineutrino.
You may also like to solve these questions
What are some potential applications of understanding atomic structure in modern technology?
- A. Designing new materials with tailored properties.
- B. Developing advanced electronics and nanotechnology.
- C. Improving nuclear energy production and safety.
- D. All of the above.
Correct Answer: D
Rationale: Understanding atomic structure is essential for various technological advancements. Designing new materials with tailored properties necessitates knowledge of atomic structure to effectively manipulate their characteristics. Developing advanced electronics and nanotechnology involves working at the atomic level to create smaller, faster, and more efficient devices. Improving nuclear energy production and safety also heavily depends on understanding atomic structure to enhance reactor design and safety measures. Therefore, all the options provided (A, B, and C) are potential applications of understanding atomic structure in modern technology.
How does lymph move through the lymphatic vessels?
- A. By the pumping action of the heart
- B. Due to muscle contractions and breathing movements
- C. Through one-way valves within the vessels
- D. All of the above
Correct Answer: C
Rationale: Lymph moves through the lymphatic vessels due to the presence of one-way valves within the vessels. These valves prevent the backflow of lymph and help propel the fluid forward as muscles contract and relax or due to breathing movements. Unlike blood circulation, the lymphatic system does not rely on the pumping action of the heart to move lymph. Choice A is incorrect because lymphatic circulation does not depend on the pumping action of the heart. Choice B is partly correct as muscle contractions and breathing movements do assist in propelling lymph, but the primary mechanism is the presence of one-way valves within the vessels, making choice C the most accurate answer. Choice D is incorrect as not all options listed contribute to how lymph moves through the lymphatic vessels.
How do vaccines primarily function within the body?
- A. Creating a physical barrier against pathogens
- B. Triggering an inflammatory response
- C. Developing immunological memory to a specific pathogen
- D. Activating phagocytes to engulf pathogens
Correct Answer: C
Rationale: Vaccines primarily function by stimulating the immune system to develop immunological memory to a specific pathogen. When a vaccine is administered, it exposes the immune system to a harmless version of a pathogen or a piece of it. This exposure triggers the immune response, leading to the production of antibodies and memory cells specific to that pathogen. Choice A is incorrect because vaccines do not create a physical barrier; rather, they prepare the immune system to recognize and fight specific pathogens. Choice B is incorrect as vaccines do trigger an immune response, but the primary goal is to create memory rather than inflammation. Choice D is incorrect as vaccines do not directly activate phagocytes; instead, they stimulate the immune system to generate a targeted response against a particular pathogen.
What are enzymes?
- A. Building blocks of muscle
- B. Biological catalysts
- C. Energy source
- D. Antibodies
Correct Answer: B
Rationale: Enzymes are biological catalysts, not building blocks of muscle. They speed up chemical reactions in living organisms without being consumed in the process. Enzymes are not an energy source or antibodies. They play a crucial role in various biological processes by lowering the activation energy required for a reaction to occur, thereby increasing the rate of the reaction.
Which type of RNA carries the genetic code from DNA to ribosomes?
- A. Ribosomal RNA (rRNA)
- B. Transfer RNA (tRNA)
- C. Messenger RNA (mRNA)
- D. Deoxyribonucleic acid (DNA)
Correct Answer: C
Rationale: - Messenger RNA (mRNA) carries the genetic information from DNA in the cell's nucleus to the ribosomes in the cytoplasm, where protein synthesis occurs.
- Ribosomal RNA (rRNA) is a component of the ribosomes where protein synthesis takes place.
- Transfer RNA (tRNA) is responsible for bringing amino acids to the ribosomes during protein synthesis.
- Deoxyribonucleic acid (DNA) is the genetic material that contains the instructions for building and maintaining an organism. DNA is transcribed into mRNA before being translated into proteins.