Which of the following is the intricate network of blood vessels responsible for transporting blood throughout the body?
- A. Lymphatic system
- B. Circulatory system
- C. Nervous system
- D. Respiratory system
Correct Answer: B
Rationale: The circulatory system, comprising the heart, blood vessels (arteries, veins, and capillaries), and blood, is responsible for transporting blood, oxygen, nutrients, and waste products throughout the body. The lymphatic system aids in maintaining fluid balance and fighting infections; the nervous system transmits signals. The respiratory system facilitates the exchange of oxygen and carbon dioxide in the body, which is distinct from the circulatory system's role in blood transport. Therefore, the correct answer is the Circulatory system (Choice B). Choices A, C, and D are incorrect as they do not pertain to the intricate network of blood vessels responsible for transporting blood throughout the body.
You may also like to solve these questions
What does the T wave on an ECG correspond to?
- A. Atrial depolarization
- B. Ventricular depolarization
- C. Atrial repolarization
- D. Ventricular repolarization
Correct Answer: D
Rationale: The T wave on an ECG corresponds to ventricular repolarization. Following ventricular depolarization, which is represented by the QRS complex, the ventricles undergo repolarization during the T wave. This phase signifies the recovery of ventricular muscle cells as they prepare for the subsequent depolarization cycle. Choices A, B, and C are incorrect because the T wave specifically reflects the repolarization of the ventricles, not the atria or their respective depolarization or repolarization phases.
What is the difference between isometric and isotonic muscle contractions?
- A. Isometric involves movement, while isotonic does not.
- B. Isotonic involves shortening of muscle, while isometric maintains length.
- C. Isometric uses more energy, while isotonic uses less.
- D. Isotonic involves smooth muscle, while isometric involves skeletal muscle.
Correct Answer: B
Rationale: The correct answer is B. Isometric contractions occur when the muscle generates tension without changing its length, while isotonic contractions involve the muscle changing length to move a load. In isotonic contractions, the muscle shortens to move a load, whereas in isometric contractions, the muscle contracts to hold a position without movement. Choice A is incorrect because isometric contractions do not involve movement, while choice C is incorrect as isotonic contractions typically require more energy due to movement. Choice D is incorrect because the type of muscle involved (smooth or skeletal) is not the defining factor between isometric and isotonic contractions.
Elements tend to gain or lose electrons to achieve stable electron configurations like those of noble gases. Their group number often indicates the number of electrons gained/lost and the resulting ionic charge, providing a good starting point for prediction.
- A. Ionic bonds involve electron sharing, while metallic bonds involve electron transfer.
- B. Ionic bonds are weak and directional, while metallic bonds are strong and non-directional.
- C. Ionic bonds exist between metals and non-metals, while metallic bonds exist only between metals.
- D. Ionic bonds form discrete molecules, while metallic bonds form extended structures.
Correct Answer: C
Rationale: Ionic bonds typically form between metals and non-metals, where one atom donates electrons (cation) and the other accepts electrons (anion). This results in the transfer of electrons. Metallic bonds, on the other hand, occur between metal atoms where electrons are shared among a sea of delocalized electrons, leading to the characteristic properties of metals like malleability and conductivity. Choice A is incorrect because ionic bonds involve electron transfer, not sharing. Choice B is incorrect as ionic bonds are strong, not weak, and are non-directional, while metallic bonds are strong and non-directional. Choice D is incorrect as ionic bonds do not form discrete molecules but rather a lattice structure, whereas metallic bonds form extended structures.
Which of the following describes a scalar quantity?
- A. Velocity
- B. Acceleration
- C. Force
- D. Speed
Correct Answer: D
Rationale: A scalar quantity is a physical quantity that has magnitude only, without any direction. Speed is an example of a scalar quantity because it only describes how fast an object is moving without specifying the direction of motion. Velocity, acceleration, and force are vector quantities because they have both magnitude and direction. Therefore, the correct answer is 'Speed.' Choices A, B, and C are incorrect because velocity, acceleration, and force are all vector quantities that involve both magnitude and direction.
What properties distinguish laser light from typical light sources?
- A. Enhanced brightness only
- B. Monochromatic nature (single color) and coherence (synchronized waves)
- C. Increased velocity
- D. Limited visibility to the human eye
Correct Answer: B
Rationale: Laser light differs from typical light sources due to its monochromatic nature (single color) and coherence (synchronized waves). This means that laser light consists of a single wavelength and synchronized waves, unlike typical light sources that emit a range of wavelengths and are incoherent. The monochromatic nature of laser light allows it to be of a single color, while coherence ensures that the waves are synchronized. These unique properties of laser light make it valuable for a wide range of applications in fields such as medicine, industry, and research. Choices A, C, and D are incorrect because laser light's distinguishing features are not related to enhanced brightness, increased velocity, or limited visibility to the human eye. Instead, it is the monochromatic nature and coherence that set laser light apart from typical light sources.