Which of the following lists four factors that affect rates of reaction?
- A. Barometric pressure, particle size, concentration, and the presence of a facilitator
- B. Temperature, particle size, concentration, and the presence of a catalyst
- C. Temperature, container material, elevation, and the presence of instability
- D. Volatility, particle size, concentration, and the presence of a catalyst
Correct Answer: B
Rationale: The correct answer is B. The factors that influence rates of reaction are temperature, particle size, concentration, and the presence of a catalyst. Temperature affects the speed of molecules, particle size impacts the available surface area for reactions, concentration influences the collision frequency between reactant molecules, and catalysts accelerate reactions by providing an alternative pathway with lower activation energy. Choices A, C, and D are incorrect as they either include irrelevant factors that do not affect reaction rates (barometric pressure, container material, elevation, and volatility) or lack important factors that do influence reaction rates (like a catalyst).
You may also like to solve these questions
Different isotopes of a particular element contain the same number of
- A. Protons
- B. Neutrons
- C. Protons and neutrons
- D. Protons, neutrons, and electrons
Correct Answer: A
Rationale: Different isotopes of a particular element contain the same number of protons. Isotopes are defined by the number of neutrons they have, which can vary while the number of protons remains the same. This is because the number of protons in an atom determines its elemental identity. Choice B - Neutrons is incorrect because isotopes can have different numbers of neutrons. Choice C - Protons and neutrons is incorrect because the number of neutrons can vary in isotopes. Choice D - Protons, neutrons, and electrons is incorrect because electrons are not fixed and can vary in an atom, but the number of protons is what defines the element.
What is a mathematical function that gives the amplitude of a wave as a function of position (and sometimes, as a function of time and/or electron spin)?
- A. Wavelength
- B. Frequency
- C. Wavenumber
- D. Wavefunction
Correct Answer: D
Rationale: The correct answer is D, Wavefunction. The wavefunction is a mathematical function that gives the amplitude of a wave as a function of position (and sometimes, as a function of time and/or electron spin). It is commonly used in quantum mechanics to describe the behavior of particles, particularly electrons, in atomic and molecular systems. The wavefunction provides information about the probability of finding a particle in a particular state or position. Wavelength (Choice A), Frequency (Choice B), and Wavenumber (Choice C) are properties of waves, but they do not directly represent the mathematical function that describes the wave's behavior as the wavefunction does.
How are elements arranged in the periodic table?
- A. Order of increasing atomic number
- B. Alphabetical order
- C. Order of increasing metallic properties
- D. Order of increasing neutron content
Correct Answer: A
Rationale: In the periodic table, the elements are arranged in order of increasing atomic number. This organization is based on the number of protons in the nucleus of each element. It provides a systematic way to classify elements and predict their properties. Knowing the atomic number of an element helps determine its placement in the periodic table and its characteristics. Therefore, the correct answer is the order of increasing atomic number as it is fundamental to the structure and properties of the elements. Choices B, C, and D are incorrect. Alphabetical order does not reflect any underlying property of the elements, metallic properties vary across the table, and neutron content alone is not the basis for the arrangement in the periodic table.
The volume of a gas is directly proportional to its absolute temperature at constant pressure. This is a statement of:
- A. Combined Gas Law
- B. Boyle's Law
- C. Charles' Law
- D. The Ideal Gas Law
Correct Answer: C
Rationale: Charles' Law states that the volume of a gas is directly proportional to its absolute temperature at constant pressure. This means that as the temperature of a gas increases, its volume also increases proportionally, and vice versa. This relationship between temperature and volume is a key feature of Charles' Law. The Combined Gas Law involves the relationships between pressure, volume, and temperature of a gas. Boyle's Law describes the inverse relationship between the pressure and volume of a gas at constant temperature. The Ideal Gas Law combines Boyle's Law, Charles' Law, and Avogadro's Law into a single expression. Therefore, the correct answer is Charles' Law, as it specifically describes the direct relationship between the temperature and volume of a gas.
What are the s block and p block elements collectively known as?
- A. Transition elements
- B. Active elements
- C. Representative elements
- D. Inactive elements
Correct Answer: C
Rationale: The s block and p block elements are collectively known as representative elements. These elements are part of the main group elements in the periodic table, excluding the transition elements. The s block elements are located in groups 1 and 2, while the p block elements are found in groups 13 to 18. These elements display a diverse range of chemical behaviors and properties, representing the variety of elements in the periodic table. Choice A, Transition elements, is incorrect because transition elements are the elements in groups 3 to 12, which are located between the s block and the p block elements. Choice B, Active elements, is not a specific term used to refer to the s and p block elements collectively. Choice D, Inactive elements, is incorrect as the s and p block elements are known for their reactivity and participation in a wide range of chemical reactions.